
م
GitHub Blog About

Joining The Church Of Emacs
A summary of how I configured my Emacs

Published on 03 October 2022
Last updated on 03 October 2022

All your computing are belong to us

Emacs, which stands for "Eight Megabytes and Constantly Swapping" is a 46
year-old text
editing program.

Everything about Emacs, from its UI to the action performed when you press the
Enter key, is
hackable. You are encouraged to extend the behavior of the
Emacs program by writing functions
in the programming language it speaks:
Emacs Lisp.

In practice, this means you have over 2000 commands at your disposal, out of the box.

For example, the align-regexp command allows you to vertically align a region
of text based
on a regular expression rule. Say you have the following
badly-formatted mess:

one = 1

fortyTwo = 42

elite = 1337

https://fuzzypixelz.com/
https://github.com/fuzzypixelz
https://fuzzypixelz.com/blog
https://fuzzypixelz.com/about

Calling align-regexp = after selecting the above snippet will yield:

one = 1

fortyTwo = 42

elite = 1337

This makes for a long-running Emacs joke; the idea that typing M-x literally-anything will
result in exactly what you want is very amusing. In
fact, while writing this article I got tired of
typing out the markdown syntax
for links, so I searched in the list of commands for "markdown
link" and, lo and
behold, markdown-insert-link exists and is even bound to SPC c l (more
on
this later). The following comic sums this up perfectly:

Real Programmers, by xkcd

Ultimately, Emacs was built around empowering end users, not just developers and
plugin

authors, to do any kind of computing they want, without ever leaving Emacs1.

I'm using Linux. A library that Emacs uses to communicate with Intel hardware.

― Erwin, #emacs, Freenode.

Emacs Lisp

https://xkcd.com/

At this point, I've been using Emacs for a little over two months. During that
time, I haven't
written much Emacs Lisp because I haven't needed to program
Emacs myself; almost
everything that I needed to do was available in the form of
a package.

MELPA, Milkypostman’s Emacs Lisp Package Archive, is a repository of over 5000
automatically
updated and curated Emacs Lisp packages. With access to so many
extensions, configuring my
Emacs consisted of customizing a few built-in
properties and aggressively yanking other
people's code — just like I've done
with VS Code.

In a way, the "real power" of Emacs is lost on me. There are many aspects of my
workflow which
would benefit from automation. However, as with all automation
endeavors, how do you know if
the cost of writing that script is less than the
total time spent doing the task manually?

Still, using Emacs means you most probably can program that niche script, if
you really want to.
And even better, someone might've come up with a snippet to
do it already.

Eye Candy

Honestly, I'm not a very good hacker. Because I care about the way user-facing
programs look
and feel. And while Emacs is very attractive to the tinkerer in
me, its UI philosophy is in stark
contrast to anything made in the last few
decades.

The default Emacs greeting window

Back in 2020, a lively thread was started on the emacs-devel mailing list in
reaction to a
Redditor asking "Why is Emacs so square?". Somewhere in the chain
of replies, one can find the
following message, by the original author of GNU Emacs:

Perhaps we should implement a mode that puts cosmetics on Emacs so it will
appeal to
those who judge by the surface of things.

— Richard Stallman

You can read more about this drama, the view of Emacs developers around UI/UX,
and the
challenge of making Emacs accessible to a wider audience in the
excellent article Making Emacs
Popular
Again, by the LWN.net computing news site.

No big deal. Emacs is ridiculously malleable and I'm not the first person to
attempt revamping
the UI.

Spacemacs, a popular Emacs distribution.

https://lwn.net/Articles/819452/
https://www.spacemacs.org/img/screenshots/ss1.png

DOOM, a faster alternative to Spacemacs.

https://github.com/doomemacs/doomemacs

N Λ N O, a very lightweight and modular configuration by Nicolas P. Rougier.

https://github.com/rougier/nano-emacs/blob/master/images/nano-emacs-dark.png

With a good idea of what's possible, I sought to customize Emacs to my liking. I
was determined
to make it look OK. First, I removed the title and menu bars,
the scroll bar, and any cruft that
cluttered my 14" laptop screen.

Next, I wrote a custom dark color scheme, which was surprisingly simple. In a
nutshell, every UI
element has a corresponding face; a set of properties that
controls its background color, its
font-weight, its size and so
on. Consequently, writing an Emacs theme felt a lot like writing CSS.

Finally, I needed to get rid of the ugly status bar, or in Emacs-speak, the
modeline. However,
handling how the modeline renders each piece of information
available user-facing was a
complex undertaking and I didn't have enough
knowledge of how Emacs works to accomplish
what I wanted.

For example, N Λ N O's modeline code alone is more than 500 lines. For
comparison, my entire
configuration is under 400 lines of Emacs Lisp. Writing a
fancy and functional modeline would
shatter my complexity budget.

Instead, I "borrowed" DOOM's modeline, which was luckily published as a
standalone package on
MELPA. With that, I had something that indeed looked OK,
at least to me.

The source document of this article opened in my Emacs.

Modal editing

I don't like Emacs' strong dependence on modifier keys. By default, opening a
file is C-x C-f
(i.e. Ctrl+X followed by Ctrl+F) which I find to be very
awkward. Instead, I appreciate
(Neo)Vim's modal editing approach better.

Modal text editing means for example that instead of typing C-n to move the
cursor down one
line, you only type j. The downside of this is the
introduction of distinct modes. In "normal"
mode, pressing j would indeed
move the cursor down one line, but in "insert" mode the "j"
character would be
typed instead. In (Neo)Vim, switching to "normal" mode is done by pressing
ESC
while i sends you back into "insert" mode. There are other modes as well, such
as "visual"
(for making selections) and "terminal" (for terminal emulation).

There is a popular Emacs package called Evil, which provides Vim2
emulation. This makes
Emacs an almost drop-in replacement for (Neo)Vim,
which was important to me as I was a very
avid Neovim user before deciding to
switch teams.

Evil worked well for a while. Then I started to notice its keybindings weren't
working consistently
across all of Emacs. I had my leader key set to Space
which meant I could configure it to open a
file by typing SPC f from
anywhere. A big improvement over C-x C-f. This approach of using
the Space key
for keybindings was popularized by Spacemacs. Yes, the word "space" in
"Spacemacs" supposedly refers to the Space key.

It turns out there are many
solutions to my problem with Emacs modifier keys, other than Evil.
God Mode for
example works by straight out removing Ctrl and Alt from all keybindings. So
that C-x C-f becomes x f. This was nice and all, but I wanted something more
Vim-like. And I
was in luck.

Meow is yet another modal editing mode for Emacs. Here is why I decided to go
with it:

Inspired by God Mode, any keybinding of the form C-a C-b C-c is by default
routed3 to
SPC a b c. This meant I wouldn't have to re-bind every single
Emacs command in order to
avoid modifiers.

Meow's modal editing model is very much an improvement over classic Vim. It
applies
many of the ideas recently introduced by
Kakoune. Read
this blog article
for a more
thorough comparison of Vim and Meow.

Meow was designed for consistency with Emacs. Unlike Evil, it provides
built-in support for
using Space as the leader key. Now my SPC f keybinding
works everywhere.

What was lost in this little transition is my Vim muscle memory. On the upside,
I found myself
to be using fewer keystrokes to achieve the same results. And in
any case, one could not expect
to use Vi modal editing everywhere, and where
it is supported, it's not the default.

It's Magit!

Magit is an Emacs package that provides a text-based interface to Git. Unlike
most GUI
interfaces to Git, it exposes everything from the common to the most
advanced Git features
with a few keystrokes. I can type SPC v (for Version
control) to bring up the Magit interface:

https://en.wikipedia.org/wiki/Emacs#Emacs_pinky
https://kakoune.org/
https://esrh.me/posts/2021-12-18-switching-to-meow.html

A Magit buffer open to the bottom of my window

As you can see, it displays the latest local and remote commits, untracked files
, and (un)staged
changes. You can stage individual sections of a file by simply
scrolling to them and pressing s;
something that is much less ergonomic in
command-line Git and is done through Interactive
Staging.

Next, press h to bring out a view of all possible actions supported by Magit:

https://git-scm.com/book/en/v2/Git-Tools-Interactive-Staging

The Magit help buffer

This is a high-level view of everything you can do in (Ma)git. Pressing any of
the suggested keys
will bring out further menus where Magit will narrow down
your action all while showing you all
available options, at every step.

This transformed my Git workflow from reading the man pages and copying commands
from
Stack Overflow, to completing my way through the Magit buffer. It also
helped me discover

many cool features I wasn't aware of, such as
Auto-squashing; exactly
like one discovers
functions by scrolling LSP auto-completions.

Org-anize all the things

Emacs comes with support for a document format called
Org:

[Org is] a GNU Emacs major mode for keeping notes, authoring documents,
computational notebooks, literate programming, maintaining to-do lists,
planning
projects, and more — in a fast and effective plain-text system.

I use Org for managing notes and to-do lists. Interestingly, the Org file format
includes syntax
for scheduling to-do items, managing priorities, setting
deadlines, enforcing habits, and so on.
All in plain text. With this information,
Org Mode can scan all your Org files to generate an
Agenda view:

https://thoughtbot.com/blog/autosquashing-git-commits
https://orgmode.org/

Actionable Agendas, from the Org Mode website.

Next, I use the proprietary but very convenient Dropbox service to sync my Org
files with my
Android phone. And luckily for me, I don't have to run Emacs
inside Termux. Because the
Orgzly
application provides a touch-screen-friendly
interface to my Org files, and can send push
notifications for upcoming to-do
items.

This is very basic usage of Org Mode. If you're more curious about how some of
the more
demanding work schedules look like in Org Mode, I recommend reading
Get Things Done With
Emacs
by Nicolas P. Rougier.

Closing words

This was a summary of my experience with configuring and using Emacs. I tried
to focus on
what sets Emacs apart from other text editors and IDEs. And what I
found to be so special
about it. Throughout the last two years, I have used Vim,
Neovim, VS Code, Jetbrains IDEs,
DOOM Emacs, Spacemacs and now vanilla Emacs.

https://orgmode.org/features.html
https://termux.dev/en/
http://www.orgzly.com/
https://www.labri.fr/perso/nrougier/GTD/index.html

It is certainly true that Emacs isn't a very popular IDE. Only 5.33% of
respondents in the 2021
Stack Overflow Developer
Surgery
claimed to use the thing. Despite that, there is a rich
community around Emacs,
comprised of people determined to carry it through the 21st century.
The fact that
this software project existed continuously for nearly half a century is a
testament
to the stubbornness of the hackers involved with it. This gives Emacs
a unique sense of
timelessness.

It's a tale as old as time: a stubborn, shell-dwelling, and melodramatic
vimmer --
tormented by Vimscript and his boundless productivity -- makes a
formal request to the
netherworld for a transfer. They agree. The terms? He
must lure more unsuspecting
souls into a life of eternal bikeshedding. Now he
runs the place.

— Henrik Lissner, author of DOOM Emacs

1 Assuming that your computation is expressible in the Emacs Lisp
programming language. ↩
2 Vi refers to the original version of the text editor commonly known as
Vim. In fact, Vim stands
for "Vi IMproved". Neovim is a more modern project
which uses the programming language Lua
instead of the often dreaded
Vimscript for writing extensions. Neovim is compatible with Vim
v8. ↩
3 There are
more
rules to deal with keybindings that use Alt. For example C-x M-t is SPC x m
t and
C-M-x is SPC g x. ↩

https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-development-environment
https://github.blog/2022-06-08-sunsetting-atom/
https://github.com/meow-edit/meow/blob/master/TUTORIAL.org#keypad

