
matklad About Links Blogroll

How I Use Git Worktrees
Jul 25, 2024

There are a bunch of posts on the internet about using git worktree command. As far as I
can tell, most of them are primarily about using worktrees as a replacement of, or a
supplement to git branches. Instead of switching branches, you just change directories. This
is also how I originally had useed worktrees, but that didn’t stick, and I abandoned them. But
recently worktrees grew on me, though my new use-case is unlike branching.

When a Branch is Enough
If you use worktrees as a replacement for branching, that’s great, no need to change
anything! But let me start with explaining why that work�ow isn’t for me.

The principle problem with using branches is that it’s hard to context switch in the middle of
doing something. You have your branch, your commit, a bunch of changes in the work tree,
some of them might be stage and some upstage. You can’t really tell Git “save all this context
and restore it later”. The solution that git suggests here is to use stashing, but that’s awkward,
as it is too easy to get lost when stashing several things at the same time, and then applying
the stash on top of the wrong branch.

Managing git state became much easier for me when I realize that staging area and stash are
just bad features, and life’s easier if I avoid them. Instead, I just commit whatever and deal
with it later. So, when I need to switch a branch in the middle of things, what I do is, basically:

$ git add .
$ git commit -m.
$ git switch another-branch

And, to switch back,
$ git switch -

Undo the last commit, but keep its changes in the working tree
$ git reset HEAD~

To make this more streamlined, I have a ggc utility which does “commit all with a trivial
message” atomically.

1
2
3

1
2
3
4

https://matklad.github.io/
https://matklad.github.io/about.html
https://matklad.github.io/links.html
https://matklad.github.io/blogroll.html

Reminder: git is not a version control system, git is a toolbox for building a VCS. Do
have a low-friction way to add your own scripts for common git operations.

And I don’t always reset HEAD~ — I usually just continue hacking with . in my git log and
then amend the commit once I am satis�ed with subset of changes

Reminder: magit, for Emacs and VS Code, is excellent for making such commit
surgery easy. In particular, instant �xup is excellent. Even if you don’t use magit,
you should have an equivalent of instant �xup among your git scripts.

So that’s how I deal with switching branches. But why worktrees then?

Worktree Per Concurrent Activity
It’s a bit hard to describe, but:

I have a �xed number of worktrees (5, to be exact)
worktrees are mostly uncorrelated to branches
and instead correspond to my concurrent activities during coding

Speci�cally:

The main worktree is a readonly worktree that contains a recent snapshot of the remote
main branch. I use this tree to compare the code I am currently working on and/or
reviewing with the master version (this includes things like “how long the build takes”,
“what is the behavior of this test” and the like, so not just the actual source code).

The work worktree, where I write most of the code. I often need to write new code and
compare it with old code at the same time. But can’t actually work on two di�erent
things in parallel. That’s why main and work are di�erent branches, but work also
constantly switches branches.

The review worktree, where I checkout code for code review. While I can’t review code
and write code at the same time, there is one thing I am implementing, and one thing I
am reviewing, but the review and implementation proceed concurrently.

Then, there’s fuzz tree, where I run log-running fuzzing jobs for the code I am actively
working on. My overall idealized feature work�ow looks like this:

go to the `work` worktree
$ cd ~/projects/tigerbeetle/work

Create a new branch. As we work with a centralized repo,
rather than personal forks, I tend to prefix my branch names

1
2
3
4
5

https://magit.vc/
https://github.com/kahole/edamagit

with `matklad/`
$ git switch -c matklad/awesome-feature

Start with a reasonably clean slate.
In reality, I have yet another script to start a branch off
fresh remote main, but this reset is a good enough approximation.
$ git reset --hard origin/main

For more complicated features, I start with an empty commit
and write the commit message _first_, before starting the work.
That's a good way to collect your thoughts and discover dead
ends more gracefully than hitting a brick wall coding at 80 WPM.
$ git commit --allow-empty

Hack furiously writing throughway code.
$ code .

At this point, I have something that I hope works,
but I would be embarrassed to share with anyone!
So that's the good place to kick off fuzzing.

First, I commit everything so far.
Remember, I have `ggc` one liner for this:
$ git add . && git commit -m.

Now I go to my `fuzz` worktree and kick off fuzzing.
I usually split screen here.
On the left, I copy the current commit hash.
On the right, I switch to the fuzzing worktree,
switch to the copied commit, and start fuzzing:

$ git add . && git commit -m. |
$ git rev-parse HEAD | ctrlc | $ cd ../fuzz
$ | $ git switch -d $(ctrlv)
$ | $./zig/zig build fuzz
$ |

While the fuzzer hums on right, I continue to furiously refactor
the code on the left and hammer my empty commit with a wishful
thinking message and my messy code commit with `.` message into
a semblance of clean git history

$ code .
$ magit-goes-brrrrr

At this point, in the work tree, I am happy with both the code
and the git history, so, if the fuzzer on the right is happy,
a PR is opened!

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

$ |
$ git push --force-with-lease | $./zig/zig build fuzz
$ gh pr create --web | # Still hasn't failed
$ |

This is again concurrency: I can hack on the branch while the fuzzer tests the “same”
code. Note that it is crucial that the fuzzing tree operates in the detached head state (-d
�ag for git switch). In general, -d is very helpful with this style of worktree work. I am
also sympathetic to the argument that, like the staging area and the stash, git branches are
a miss feature, but I haven’t made the plunge personally yet.
Finally, the last tree I have is scratch — this is a tree for arbitrary random things I need to
do while working on something else. For example, if I am working on
matklad/my-feature in work, and reviewing #6292 in review, and, while reviewing,
notice a tiny unrelated typo, the PR for that typo is quickly prepped in the scratch
worktree:

$ cd ../scartch
$ git switch -c matklad/quick-fix
$ code . && git add . && git commit -m 'typo' && git push
$ cd -

TL;DR: consider using worktrees not as a replacement for branches, but as a means to
manage concurrency in your tasks. My level of concurrency is:

main for looking at the pristine code,
work for looking at my code,
review for looking at someone elses code,
fuzz for my computer to look at my code,
scratch for everything else!

 Fix typo Subscribe Get in touch matklad

54
55
56
57
58

1
2
3
4

https://martinvonz.github.io/jj/latest/
https://github.com/matklad/matklad.github.io/edit/master/content/posts/2024-07-25-git-worktrees.dj
https://matklad.github.io/feed.xml
mailto:aleksey.kladov+blog@gmail.com
https://github.com/matklad

