
datasette-ripgrep: deploy a regular expression search engine for your
source code
28th November 2020

This week I built datasette-ripgrep—a web application for running regular expression searches
against source code, built on top of the amazing ripgrep command-line tool.

datasette-ripgrep demo

I’ve deployed a demo version of the application here:

ripgrep.datasette.io/-/ripgrep?pattern=pytest

The demo runs searches against the source code of every one of my GitHub repositories that
start with datasette—61 repos right now—so it should include all of my Datasette plugins plus
the core Datasette repository itself.

Since it’s running on top of ripgrep, it supports regular expressions. This is absurdly useful.
Some examples:

Every usage of the .plugin_config( method: plugin_config\(

Everywhere I use async with httpx.AsyncClient (usually in tests): async with.*AsyncClient

All places where I use a Jinja | filter inside a variable: \{\{.*\|.*\}\}

I usually run ripgrep as rg on the command-line, or use it within Visual Studio Code (fun fact:
the reason VS Code’s “Find in Files” is so good is it’s running ripgrep under the hood).

So why have it as a web application? Because this means I can link to it, bookmark it and use it
on my phone.

Simon Willison’s Weblog Subscribe

https://github.com/simonw/datasette-ripgrep
https://github.com/BurntSushi/ripgrep
https://ripgrep.datasette.io/-/ripgrep?pattern=pytest
https://github-to-sqlite.dogsheep.net/github/repos?name__startswith=datasette&owner__exact=9599
https://ripgrep.datasette.io/-/ripgrep?pattern=%5C.plugin_config%5C%28
https://ripgrep.datasette.io/-/ripgrep?pattern=async+with.*AsyncClient
https://ripgrep.datasette.io/-/ripgrep?pattern=%5C%7B%5C%7B.*%5C%7C.*%5C%7D%5C%7D
https://twitter.com/simonw/status/1331381448171929600
https://simonwillison.net/
https://simonwillison.net/about/#subscribe


Why build this?

There are plenty of great existing code search tools out there already: I’ve heard great things
about livegrep, and a quick Google search shows a bunch of other options.

Aside from being a fun project, datasette-ripgrep has one key advantage: it gets to benefit
from Datasette’s publishing mechanism, which means it’s really easy to deploy.

That ripgrep.datasette.io demo is deployed by checking out the source code to be searched into
a all directory and then using the following command:

datasette publish cloudrun \

    --metadata metadata.json \

    --static all:all \

    --install=datasette-ripgrep \

    --service datasette-ripgrep \

    --apt-get-install ripgrep

all is a folder containing the source code to be searched. metadata.json contains this:

{

    "plugins": {

        "datasette-ripgrep": {

            "path": "/app/all",

https://github.com/livegrep/livegrep
https://ripgrep.datasette.io/


            "time_limit": 3.0

        }

    }

}

That’s all there is to it! The result is a deployed code search engine, running on Google Cloud
Run.

(If you want to try this yourself you’ll need to be using the just-released Datasette 0.52.)

The GitHub Action workflow that deploys the demo also uses my github-to-sqlite tool to fetch my
repos and then shallow-clones the ones that begin with datasette.

If you have your own Google Cloud Run credentials, you can run your own copy of that
workflow against your own repositories.

A different kind of Datasette plugin

Datasette is a tool for publishing SQLite databases, so most Datasette plugins integrate with
SQLite in some way.

datasette-ripgrep is different: it makes no use of SQLite at all, but instead takes advantage of
Datasette’s URL routing, datasette publish deployments and permissions system.

The plugin implementation is currently 134 lines of code, excluding tests and templates.

While the plugin doesn’t use SQLite, it does share a common philosophy with Datasette: the
plugin bundles the source code that it is going to search as part of the deployed application, in a
similar way to how Datasette usually bundles one or more SQLite database files.

As such, it’s extremely inexpensive to run and can be deployed to serverless hosting. If you
need to scale it, you can run more copies.

This does mean that the application needs to be re-deployed to pick up changes to the
searchable code. I’ll probably set my demo to do this on a daily basis.

Controlling processes from asyncio

The trickiest part of the implementation was figuring out how to use Python’s
asyncio.create_subprocess_exec() method to safely run the rg process in response to
incoming requests.

I don’t want expensive searches to tie up the server, so I implemented two limits here. The first
is a time limit: by default, searches have a second to run after which the rg process will be
terminated and only results recieved so far will be returned. This is achieved using the
asyncio.wait_for() function.

I also implemented a limit on the number of matching lines that can be returned, defaulting to
2,000. Any more than that and the process is terminated early.

Both of these limits can be customized using plugin settings (documented in the README). You
can see how they are implemented in the async def run_ripgrep(pattern, path, time_limit=1.0,
max_lines=2000) function.

https://github.com/simonw/datasette-ripgrep/blob/main/.github/workflows/deploy_demo.yml
https://github.com/dogsheep/github-to-sqlite
https://docs.datasette.io/en/stable/publish.html#publishing-to-google-cloud-run
https://github.com/simonw/datasette-ripgrep/blob/07b9ced2935b0b6080c1c42fcaf6ab9e8003d186/datasette_ripgrep/__init__.py
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://github.com/simonw/datasette-ripgrep/blob/main/README.md
https://github.com/simonw/datasette-ripgrep/blob/0.2/datasette_ripgrep/__init__.py#L9-L55
https://github.com/simonw/datasette-ripgrep/blob/0.2/datasette_ripgrep/__init__.py#L9-L55


Highlighted linkable line numbers

The other fun implementation detail is the way the source code listings are displayed. I’m using
CSS to display the line numbers in a way that makes them visible without them breaking copy-
and-paste (inspired by this article by Sylvain Durand).

code:before {

    content: attr(data-line);

    display: inline-block;

    width: 3.5ch;

    -webkit-user-select: none;

    color: #666;

}

The HTML looks like this:

<pre><code id="L1" data-line="1">from setuptools import setup</code>

<code id="L2" data-line="2">import os</code>

<code id="L3" data-line="3">&nbsp;</code>

<code id="L4" data-line="4">VERSION = &#34;0.1&#34;</code>

...

I wanted to imitate GitHub’s handling of line links, where adding #L23 to the URL both jumps to
that line and causes the line to be highlighted. Here’s a demo of that—I use the following
JavaScript to update the contents of a <style id="highlightStyle"></style> element in the
document head any time the URL fragment changes:

<script>

var highlightStyle = document.getElementById('highlightStyle');

function highlightLineFromFragment() {

    if (/^#L\d+$/.exec(location.hash)) {

        highlightStyle.innerText = `${location.hash} { background-color: yellow; }`;

    }

}

highlightLineFromFragment();

window.addEventListener("hashchange", highlightLineFromFragment);

</script>

It’s the simplest way I could think of to achieve this effect.

Update 28th November 2020: Louis Lévêque on Twitter suggested using the CSS :target
selector instead, which is indeed MUCH simpler—I deleted the above JavaScript and replaced it
with this CSS:

:target {

    background-color: #FFFF99;

}

Next steps for this project

I’m pleased to have got datasette-ripgrep to a workable state, and I’m looking forward to using it
to answer questions about the growing Datasette ecosystem. I don’t know how much more time
I’ll invest in this—if it proves useful then I may well expand it.

https://www.sylvaindurand.org/using-css-to-add-line-numbering/
https://ripgrep.datasette.io/-/ripgrep/view/datasette-allow-permissions-debug/setup.py#L23
https://developer.mozilla.org/en-US/docs/Web/CSS/:target
https://developer.mozilla.org/en-US/docs/Web/CSS/:target
https://simonwillison.net/2020/Nov/28/datasette-ripgrep/


I do think there’s something really interesting about being able to spin up this kind of code
search engine on demand using datasette publish. It feels like a very useful trick to have
access to.

Better URLs for my TILs

My other project this week was an upgrade to til.simonwillison.net: I finally spent the time to
design nicer URLs for the site.

Before:

til.simonwillison.net/til/til/javascript_manipulating-query-params.md

After:

til.simonwillison.net/javascript/manipulating-query-params

The implementation for this takes advantage of a feature I sneaked into Datasette 0.49: Path
parameters for custom page templates. I can create a template file called
pages/{topic}/{slug}.html and Datasette use that template to handle 404 errors that match
that pattern.

Here’s the new pages/{topic}/{slug}.html template for my TIL site. It uses the sql() template
function from the datasette-template-sql plugin to retrieve and render the matching TIL, or
raises a 404 if no TIL can be found.

I also needed to setup redirects from the old pages to the new ones. I wrote a TIL on edirects
for Datasette explaining how I did that.

TIL this week

Redirects for Datasette

Releases this week

datasette-ripgrep 0.2—2020-11-27

datasette-ripgrep 0.1—2020-11-26

datasette-atom 0.8.1—2020-11-25

datasette-ripgrep 0.1a1—2020-11-25

datasette-ripgrep 0.1a0—2020-11-25

datasette-graphql 1.2.1—2020-11-24

Posted 28th November 2020 at 6:51 am · Follow me on Mastodon or Twitter or subscribe to my newsletter

More recent articles

Three major LLM releases in 24 hours (plus weeknotes) - 10th April 2024
Building files-to-prompt entirely using Claude 3 Opus - 8th April 2024

Running OCR against PDFs and images directly in your browser - 30th March 2024

https://til.simonwillison.net/
https://github.com/simonw/til/issues/34
https://simonwillison.net/2020/Sep/15/datasette-0-49#path-parameters-custom-page-templates
https://simonwillison.net/2020/Sep/15/datasette-0-49#path-parameters-custom-page-templates
https://github.com/simonw/til/blob/main/templates/pages/%7Btopic%7D/%7Bslug%7D.html
https://github.com/simonw/datasette-template-sql
https://til.simonwillison.net/til/til/datasette_redirects-for-datasette.md
https://til.simonwillison.net/til/til/datasette_redirects-for-datasette.md
https://til.simonwillison.net/til/til/datasette_redirects-for-datasette.md
https://github.com/simonw/datasette-ripgrep/releases/tag/0.2
https://github.com/simonw/datasette-ripgrep/releases/tag/0.1
https://github.com/simonw/datasette-atom/releases/tag/0.8.1
https://github.com/simonw/datasette-ripgrep/releases/tag/0.1a1
https://github.com/simonw/datasette-ripgrep/releases/tag/0.1a0
https://github.com/simonw/datasette-graphql/releases/tag/1.2.1
https://simonwillison.net/2020/Nov/28/
https://fedi.simonwillison.net/@simon
https://twitter.com/simonw
https://simonwillison.net/about/#subscribe
https://simonwillison.net/2024/Apr/10/weeknotes-llm-releases/
https://simonwillison.net/2024/Apr/8/files-to-prompt/
https://simonwillison.net/2024/Mar/30/ocr-pdfs-images/


llm cmd undo last git commit - a new plugin for LLM - 26th March 2024

Building and testing C extensions for SQLite with ChatGPT Code Interpreter - 23rd March 2024

Claude and ChatGPT for ad-hoc sidequests - 22nd March 2024
Weeknotes: the aftermath of NICAR - 16th March 2024

The GPT-4 barrier has finally been broken - 8th March 2024

Prompt injection and jailbreaking are not the same thing - 5th March 2024

Interesting ideas in Observable Framework - 3rd March 2024

async 39  css 145  projects 366  python 917  datasette 388  weeknotes 178  ripgrep 5  bakeddata 9

Next: Weeknotes: github-to-sqlite workflows, datasette-ripgrep enhancements, Datasette 0.52

Previous: Weeknotes: datasette-indieauth, datasette-graphql, PyCon Argentina

datasette-ripgrep: deploy a regular expression search engine for your source code
https://t.co/vBMvQy3SG0 — Simon Willison (@simonw) November 28, 2020

Source code  ©  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015
2016  2017  2018  2019  2020  2021  2022  2023  2024

https://simonwillison.net/2024/Mar/26/llm-cmd/
https://simonwillison.net/2024/Mar/23/building-c-extensions-for-sqlite-with-chatgpt-code-interpreter/
https://simonwillison.net/2024/Mar/22/claude-and-chatgpt-case-study/
https://simonwillison.net/2024/Mar/16/weeknotes-the-aftermath-of-nicar/
https://simonwillison.net/2024/Mar/8/gpt-4-barrier/
https://simonwillison.net/2024/Mar/5/prompt-injection-jailbreaking/
https://simonwillison.net/2024/Mar/3/interesting-ideas-in-observable-framework/
https://simonwillison.net/tags/async/
https://simonwillison.net/tags/css/
https://simonwillison.net/tags/projects/
https://simonwillison.net/tags/python/
https://simonwillison.net/tags/datasette/
https://simonwillison.net/tags/weeknotes/
https://simonwillison.net/tags/ripgrep/
https://simonwillison.net/tags/bakeddata/
https://simonwillison.net/2020/Dec/6/weeknotes/
https://simonwillison.net/2020/Nov/22/weeknotes/
https://t.co/vBMvQy3SG0
https://twitter.com/simonw/status/1332580011707047938?ref_src=twsrc%5Etfw
https://github.com/simonw/simonwillisonblog
https://simonwillison.net/2002/
https://simonwillison.net/2003/
https://simonwillison.net/2004/
https://simonwillison.net/2005/
https://simonwillison.net/2006/
https://simonwillison.net/2007/
https://simonwillison.net/2008/
https://simonwillison.net/2009/
https://simonwillison.net/2010/
https://simonwillison.net/2011/
https://simonwillison.net/2012/
https://simonwillison.net/2013/
https://simonwillison.net/2014/
https://simonwillison.net/2015/
https://simonwillison.net/2016/
https://simonwillison.net/2017/
https://simonwillison.net/2018/
https://simonwillison.net/2019/
https://simonwillison.net/2020/
https://simonwillison.net/2021/
https://simonwillison.net/2022/
https://simonwillison.net/2023/
https://simonwillison.net/2024/

