
Declarative NixOS containers
2020-12-28

NixOS’ containers allow you to run separate lightweight NixOS instances on the same machine. This can be
interesting if you want to deploy multiple services on the same host that each need a custom OS configuration.
NixOS’ containers do not provide full security out of the box (just like docker). They do give you a separate chroot,
but a privileged user (root) in a container can escape the container and become root on the host system. With that
disclaimer out of the way (we have some solutions at the bottom of this post), let’s look at an example.

Suppose we wanted to make a container called wasabi that hosts a simple HTTPD server. The configuration
would look something like this:

 containers.wasabi = {

 ephemeral = true;

 autoStart = true;

 config = { config, pkgs, ... }: {

 services.httpd.enable = true;

 services.httpd.adminAddr = "foo@example.org";

 networking.firewall.allowedTCPPorts = [80];

 };

 };

After a nixos-rebuild switch , we will see that a new service is started container@wasabi . If we
curl localhost then we will see that it works:

$ curl 'http://localhost'

<html><body><h1>It works!</h1></body></html>

$ systemctl status container@wasabi

● container@wasabi.service - Container 'wasabi'

 Loaded: loaded (/nix/store/...-unit-container-wasabi.service/container@wasabi.servic

 Active: active (running) since Thu 2020-12-24 14:22:49 UTC; 1h 15min ago

The container punched a hole through the firewall of the host and allowed us to access the hosted content, even
from other computers than our own. But how can we see the status of the HTTPD daemon? Running
systemctl status httpd on our server will show us nothing.

$ systemctl status httpd

Unit httpd.service could not be found.

Beard Hat Code About

https://blog.beardhatcode.be/
https://blog.beardhatcode.be/about/

Logging in to the container
To see the HTTPD service, we need to log into the container with:

sudo nixos-container root-login wasabi

Once in there, we see that the HTTPD service is indeed running:

[root@wasabi:~]# systemctl status httpd

● httpd.service - Apache HTTPD

 Loaded: loaded (/nix/store/...-unit-httpd.service/httpd.service; enabled; vendor pre

 Active: active (running) since Thu 2020-12-24 14:22:49 UTC; 12min ago

 ...

We can also find the server logs in /var/logs/httpd directory in the container.

To preserve state or not to preserve state
By default, nix-containers are stateful, files you modify while logged in to your container will persist over restarts
and updates of the container. Just like your document folder that remains untouched by nixos-rebuid . Files
managed by nix cannot be modified as they are symlinked from the read only /nix/store shared by host and
container. So don’t store secrets in the store if you don’t trust the container fully.

We can also ensure that a container starts “fresh” every time it is updated or reloaded. To do this we set
containers.wasabi.ephemeral = true . My general recommendation for configuration management is that

you want as less state in your containers as possible. This ensures that you can nix-rebuild on another host
and still have everything working.

Mounts
But sometimes there is important state you want to keep: uploaded files, database contents and so on. How can
we manage those? You can preserve data in a mount. For this example, let’s imagine that we want to preserve our
HTTPD logs. To do this, we use the containers.<name>.bindMounts option:

 containers.wasabi.bindMounts = {

 "/var/log/httpd" = {

 hostPath = "/mnt/wasabiData/";

 isReadOnly = false;

 };

 };

The configuration above specifies that /var/log/httpd in the container should be linked to
/mnt/wasabiData on the host (machine running the containers). For this to work the folders should exist and for

HTTPD to have write privileges on the folder in the container we should declare the folders as follows, with
systemd.tmpfiles (it’s a bad name, I know). In the config of the container (the body of the function in

containers.wasabi.config), we must ensure that the /var/log/httpd directory is a directory (d) and that
it is owned by user wwwrun (first one) and the group wwwrun (second one). The user and group must be set
differently depending on the needs of your system, if you don’t set the user and group properly, HTTPD will not be
allowed to write to the folder. The easiest way to find out what user and group you need is to log into the container
before you set up the mount and find out the permissions with ls -l in the parent directory.

containers.wasabi = {

 ...

 config = { config, pkgs, ... }: {

 systemd.tmpfiles.rules = [

 "d /var/log/httpd 700 wwwrun wwwrun -"

];

 ...

 };

}

We must also ensure that /mnt/wasabiData/ exists on the host. Do not use tempfiles to achieve this, as
this can cause confusing problems when you redeploy the system without modification to the container. In that
case, the tempfiles on the host get executed, changing the permissions of the mounted directory in a way that may
conflict with the configuration inside your container (your container will suddenly lose access to the data).

Data stored in mounted folders will be preserved even if the container is set to be ephemeral.

Networking and port forwarding
By default, declarative nix containers can use the network of the host. They can initiate connections to anywhere
and listen on any port.

If you want to do any kind of port forwarding or reverse proxies you must set all of the following properties
on your container

 containers.wasabi = {

 privateNetwork = true;

 hostAddress = "192.168.100.2"

 localAddress = "192.168.100.11";

 }

You may adjust the IP addresses to your liking. By setting privateNetwork to true, the containers network is
decoupled from the hosts network. It gets its own virtual interface ve-wasabi . The container can not directly
listen on ports on the host, and it cannot initiate connections to the outside world. The only connections it can have
is to the host.

Give internet access
To allow our container to initiate connections to the public internet we need to set up network address translation
(NAT). This will allow our containers to open non-privileged ports (> 1024) on the host to send and receive packets

https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation

to the outside world. To do this, add the following to the host config. (with eth0 the name of your real network
interface)

 networking.nat.enable = true;

 networking.nat.internalInterfaces = ["ve-wasabi"];

 networking.nat.externalInterface = "eth0";

You can add the names of all containers with privateNetwork set to true that need internet access. To allow
access to the internet to all your containers with a private network you can set
networking.nat.internalInterfaces = ["ve-*"];

Note: This only if the container needs to connect remote servers (like databases), it is not needed to reply to
incoming traffic coming form, for example a reverse proxy service on the host.

Reverse proxies
Before you start remapping ports, it might be interesting to realize that this is not necessary for all applications.
Consider that our host is a service that host various HTTP based services in the containers wasabi , sambal
and tabasco . With IP addresses 192.168.100.11 , 192.168.100.22 and 192.168.100.33 . We can use a
nginx instance with Let’s Encrypt certificates that allows us to dispatch incoming requests to the right container.

 security.acme.acceptTerms = true;

 security.acme.email = "letsencrypt@example.com";

 services.nginx = {

 enable = false;

 recommendedProxySettings = true;

 recommendedTlsSettings = true;

 virtualHosts = {

 "wasabi.example.com" = {

 enableACME = true;

 forceSSL = true;

 locations."/".proxyPass = "http://192.168.100.11:80";

 };

 "samabal.example.com" = {

 enableACME = true;

 forceSSL = true;

 locations."/".proxyPass = "http://192.168.100.22:80";

 };

 "tabasco.example.com" = {

 enableACME = true;

 forceSSL = true;

 locations."/".proxyPass = "http://192.168.100.33:80";

 };

 };

 };

https://letsencrypt.org/

Tip: you might want to put the IP addresses in variables.

Real Port Forwarding
If you only have one HTTP host or if the solution above does not work for you, you can use real port forwarding.
The example below forwards port 22 on the container to port 2222 on the host, and forwards port 80 on the
container to 8080 on the host. The ports should be opened by both the container’s firewall and the hosts’ firewall.

 containers.wasabi.forwardPorts = [

 {

 containerPort = 22;

 hostPort = 2222;

 protocol = "tcp";

 }

 {

 containerPort = 80;

 hostPort = 8080;

 protocol = "tcp";

 }

];

Notes:

Unfortunately, IPv6 forwarding is not supported (issue) yet.
The loopback interface is explicitly excluded when forwarding ports. This means that we cannot curl
localhost:8080 on the host but other devices on the network can curl myIP:8080 .

Underpinnings
NixOS containers are based on systemd-nspawn, a fancy chroot in the systemd-container program.

If you run into trouble, it might be interesting to check out the man pages of the project systemd-nspawn (1) and
systemd-nspawn (5) and ofcourse the systemd-nspawn page on ArchWiki.

Security
A quick online search for “systemd-nspawn security” will tell you that it is “not secure”. By default, NixOS containers
are “privileged containers”, these are containers where the user id zero inside the container has the same meaning
outside the container. With some tricks, the root user inside the container can escape the container. (This issue
also affects docker and the likes).

There are two ways around this: 1) don’t run vulnerable programs in your container as root, 2) make the container
unprivileged. Option 1) will probably work for you, but if not, I’ll briefly show you what option 2) entails.

Unprivileged containers

https://github.com/systemd/systemd/issues/6106
https://manpages.ubuntu.com/manpages/latest/en/man1/systemd-nspawn.1.html
https://manpages.ubuntu.com/manpages/latest/en/man5/systemd.nspawn.5.html
https://wiki.archlinux.org/index.php/Systemd-nspawn

Luckily there is a dim ray of hope: We can drop the privileges of a container to a non-privileged user with nspawn’s
-U option (set containers.wasabi.extraFlags = ["-U"];). This option ensures that the root user inside

the container does not have UID 0 outside the container but rather something like 1815543862 . This works, but
there are a lot of downsides to this regarding communication with the host and the outside world:

You cannot listen on ports below 1024 in the container, not even as root (but we can easily tell httpd to listen on
8080)
bindMounts break because there is no way to change the permissions of the mount to the right thing,

because root in the container is not allowed to alter the permissions.
nixos-container root-login is not compatible with these kinds of permissions

But if you are OK with that, you should be fine.

Note: if you find a nice way to fix some of these problems, let me know, or even better open a PR adding a
privileged option to the containers in nixpkgs.

Stripping capabilities
Another way to reduce the capabilities of a container is by using containers.wasabi.dropCapabilities to
remove some capabilities assigned to the container by default. A list of capabilities can be found in the capabilities
(7) manpage, the capabilities assigned by default can be found in the “security options” section of the systemd-
nspawn (1) . This section also holds more tricks to be added with containers.wasabi.extraFlags .

Sources
Runtimes And the Curse of the Privileged Container by Christian Brauner, June 18, 2019: An excellent read on
container security
The NixOS containers module implementaion
systemd-nspawn on ArchWiki
A lot of manpages

Beard Hat Code

blog@beardhatcode.be

 beardhatcode

 robbertgs

A buffer overflow of all the things that go on under my hat while I'm coding...

https://github.com/NixOS/nixpkgs
https://manpages.ubuntu.com/manpages/latest/en/man7/capabilities.7.html
https://manpages.ubuntu.com/manpages/latest/en/man7/capabilities.7.html
https://manpages.ubuntu.com/manpages/latest/en/man1/systemd-nspawn.1.html
https://manpages.ubuntu.com/manpages/latest/en/man1/systemd-nspawn.1.html
https://people.kernel.org/brauner/runtimes-and-the-curse-of-the-privileged-container
https://github.com/NixOS/nixpkgs/blob/master/nixos/modules/virtualisation/nixos-containers.nix
https://wiki.archlinux.org/index.php/Systemd-nspawn
mailto:blog@beardhatcode.be
https://github.com/beardhatcode
https://github.com/beardhatcode
https://github.com/beardhatcode
https://www.linkedin.com/in/robbertgs
https://www.linkedin.com/in/robbertgs
https://www.linkedin.com/in/robbertgs

