
MistCSS is better understood with an example.

Let's create a classic Button  component accepting two props:

size: 'lg' | 'sm'

danger: boolean

src/Button.mist.css

Getting started

Install

npm pnpm yarn bun

Usage

CSS CSS � Tailwind

npm install --save-dev mistcss

@scope (.button) {

  button:scope {

    /* Default style */

    font-size: 1rem;

    border-radius: 0.25rem;

    &[data-size='lg'] {

      font-size: 1.5rem;

    }

shell

css

Menu On this page 

🌬 MistCSS Guide Sponsor

https://typicode.github.io/mistcss/
https://typicode.github.io/mistcss/introduction.html
https://github.com/sponsors/typicode


WARNING

The class in @scope  needs to be unique across your project. Plans are in place to automate this

check.

INFO

💯 of the CSS code above is standard and valid. MistCSS doesn't introduce any proprietary
syntax. As a consequence, your code editor will support it out of the box.

Run mistcss  command:

You can now import your Button  component like this:

    &[data-size='sm'] {

      font-size: 0.75rem;

    }

    &[data-danger] {

      background-color: red;

      color: white;

    }

  }

}

npx mistcss ./src

# Button.mist.tsx will be created

import { Button } from '.components/Button.mist'

export default const App = () => (

  <main>

    {/* Use it like a normal React component */}

    <Button size="lg">Submit</Button>

    <Button size="lg" danger>Delete</Button>

    <Button onClick={handleClick}>Cancel</Button>

    {/* 💥 TypeScript will catch the wrong size here */}

    <Button size="foo">Oops</Button>

shell

tsx



And just like that a visual and type safe React component was created without writing a
single line of JS ✨

Since MistCSS uses pure CSS, you're not limited and can use ALL CSS features directly:

Container queries @container  to adapt style based on your component size

CSS variables, for example --primary-color , to have a consistent style

Media queries @media (prefers-color-scheme: dark) , to handle dark mode

And more...

Of course, you can also use TailwindCSS utility classes in your MistCSS components (click
on the CSS + Tailwind  in the Button example above).

Visit the workflow section to see how to automatically run mistcss  as part your dev

workflow.

MistCSS is a new project, expect breaking changes until v1.0 .

If you like this project and want to help, please consider having your company sponsor it.
Leaving a ⭐ on GitHub is always helpful too.

Thank you 🙇

The power of CSS

Next step

Support

Why the name?

  </main>

)

https://typicode.github.io/mistcss/workflow.html
https://github.com/typicode/mistcss


Previous page
Introduction

Next page
Integrate to your Workflow

C in CSS stands for cascade 🌊 → atomized water forms mist 🌫 → MistCSS creates pure
CSS atomic components 🌬

https://typicode.github.io/mistcss/introduction.html
https://typicode.github.io/mistcss/workflow.html

