
DuckDB as the New jq
(https://www.pgrs.net/2024/03/21/duckdb-as-the-
new-jq/)
 March 21, 2024 • 3 minute read

Recently, I’ve been interested in the DuckDB (https://duckdb.org/) project (like a SQLite (https://www.sqlite.org/) geared
towards data applications). And one of the amazing features is that it has many data importers included
without requiring extra dependencies. This means it can natively read and parse JSON as a database table,
among many other formats.

I work extensively with JSON day to day, and I often reach for jq (https://jqlang.github.io/jq/) when exploring
documents. I love jq , but I find it hard to use. The syntax is super powerful, but I have to study the docs
anytime I want to do anything beyond just selecting fields.

Once I learned DuckDB could read JSON files directly into memory, I realized that I could use it for many of
the things where I’m currently using jq . In contrast to the complicated and custom jq syntax, I’m very
familiar with SQL and use it almost daily.

Here’s an example:

First, we fetch some sample JSON to play around with. I used the GitHub API to grab the repository
information from the golang org:

Now, as a sample question to answer, let’s get some stats on the types of open source licenses used.

The JSON structure looks like this:

% curl 'https://api.github.com/orgs/golang/repos' > repos.json

https://www.pgrs.net/2024/03/21/duckdb-as-the-new-jq/
https://www.pgrs.net/2024/03/21/duckdb-as-the-new-jq/
https://www.pgrs.net/2024/03/21/duckdb-as-the-new-jq/
https://duckdb.org/
https://www.sqlite.org/
https://jqlang.github.io/jq/

This might not be the best way, but here is what I cobbled together after searching and reading some docs for
how to do this in jq :

[

 {

 "id": 1914329,

 "name": "gddo",

 "license": {

 "key": "bsd-3-clause",

 "name": "BSD 3-Clause \"New\" or \"Revised\" License",

 ...

 },

 ...

 },

 {

 "id": 11440704,

 "name": "glog",

 "license": {

 "key": "apache-2.0",

 "name": "Apache License 2.0",

 ...

 },

 ...

 },

 ...

]

 % cat repos.json | jq \

 'group_by(.license.key)

 | map({license: .[0].license.key, count: length})

 | sort_by(.count)

 | reverse'

[

 {

 "license": "bsd-3-clause",

 "count": 23

 },

 {

 "license": "apache-2.0",

 "count": 5

 },

 {

 "license": null,

 "count": 2

 }

]

And here is what it looks like in DuckDB using SQL:

For me, this SQL is much simpler and I was able to write it without looking at any docs. The only tricky part is
querying nested JSON with the ->> operator. The syntax is the same as the PostgreSQL JSON Functions
(https://www.postgresql.org/docs/current/functions-json.html), however, so I was familiar with it.

And if we do need the output in JSON, there’s a DuckDB flag for that:

We can still even pretty print with jq at the end, after using DuckDB to do the heavy lifting:

% duckdb -c \

 "select license->>'key' as license, count(*) as count \

 from 'repos.json' \

 group by 1 \

 order by count desc"

┌──────────────┬───────┐

│ license │ count │

│ varchar │ int64 │

├──────────────┼───────┤

│ bsd-3-clause │ 23 │

│ apache-2.0 │ 5 │

│ │ 2 │

└──────────────┴───────┘

% duckdb -json -c \

 "select license->>'key' as license, count(*) as count \

 from 'repos.json' \

 group by 1 \

 order by count desc"

[{"license":"bsd-3-clause","count":23},

{"license":"apache-2.0","count":5},

{"license":null,"count":2}]

https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-json.html

JSON is just one of the many ways of importing data into DuckDB. This same approach would work for CSVs,
parquet, Excel files, etc.

And I could choose to create tables and persist locally, but often I’m just interrogating data and don’t need the
persistence.

Read more about DuckDB’s great JSON support in this blog post: Shredding Deeply Nested JSON, One
Vector at a Time (https://duckdb.org/2023/03/03/json.html)

Update:

I also learned that DuckDB can read the JSON directly from a URL, not just a local file:

% duckdb -json -c \

 "select license->>'key' as license, count(*) as count \

 from 'repos.json' \

 group by 1 \

 order by count desc" \

 | jq

[

 {

 "license": "bsd-3-clause",

 "count": 23

 },

 {

 "license": "apache-2.0",

 "count": 5

 },

 {

 "license": null,

 "count": 2

 }

]

% duckdb -c \

 "select license->>'key' as license, count(*) as count \

 from read_json('https://api.github.com/orgs/golang/repos') \

 group by 1 \

 order by count desc"

 Updated: March 21, 2024

https://duckdb.org/2023/03/03/json.html
https://duckdb.org/2023/03/03/json.html

