
Colbert
(https://www.colbert.nl/)

�

Execute formulas stored in
database �elds with (almost)
standard SQL

10 jan 2024

Harness the Potential of Storing and Executing Formulas

from Database Fields for Expanded Analytical Power

What we are familiar with

What we would like

Formula Field

Design Principles

The concept behind this

Two manifestations

Parameter binding

Orthogonality

Examples 

A quick summary

https://www.colbert.nl/
https://www.colbert.nl/


In current Database Management Systems (DBMS), the
inability to store and execute formulas at the individual
record level poses a significant challenge.

This practice is generally discouraged owing to security
issues, such as susceptibility to SQL injection vulnerabilities,
performance-related concerns as well as the need for
robust error handling mechanisms and careful validation
and sanitation of user input.

Moreover, there exists a lack of tidy implementations
seamlessly incorporating this functionality into SQL.

Colbert, however, disrupts this norm by seamlessly
integrating formula storage and execution into SQL in a
secure and straightforward manner. Notably, this
integration adheres to the principle of orthogonality,
whereby different language features can be combined or
used independently in a consistent and predictable manner.

This article provides a concise technical exploration of
Colbert’s capabilities by delving into the mechanics of
storing and executing formulas within SQL.

What we are familiar with
We are already familiar with calculated fields that apply to
an entire column.
So in the following SQL statement, each employee is
assigned a bonus, calculated according to the same
formula: (Revenue – Target) * 0.05.

Select EmpId,Year,Name, (Revenue – Target) *

0.05 as bonus

from Employees natural join Sales

What we would like

Various aspects

Upcoming blog

Videos



But what if every employee could have a different bonus
agreement?
In that case we should be able to enter a bonus formula for
each employee using the same syntax as when defining a
calculated field.
Colbert facilitates this by introducing a novel category of
field, denoted as a Formula Field.

Formula Field

Employees

Sales

The Employees table has a formula field called Bonus. The
Sales table contains sales figures per year.

To determine the annual bonus per employee using the
Bonus Formula, Colbert enables the execution of the
following simple SQL statement.

Select EmpId, Year, Name, Bonus 

from Employees natural join Sales

This Query produces the next result:

Annual bonus per employee calculated by the bonus formula

Design Principles: Simplicity, Power, and Safety.
Colbert follows certain fundamental design principles to
achieve optimal solutions that embody simplicity, power,
and safety. Formula fields should seamlessly integrate,



feeling as though they’ve always been a natural part of SQL.

No extension of SQL: The solution should refrain from
introducing additional complexities to SQL.
Intuitive integration of formulas: The implementation
should prioritize a user-friendly and instinctive
utilization of mathematical expressions.
Robust type checking: The solution should incorporate
a robust type mechanism to enhance data integrity
and prevent type-related errors.
Orthogonality within SQL: The solution should be
orthogonal meaning that everything fits on everything
within the defined syntax for SQL. The solution must
avoid unnecessary constraints on the use of formula
fields.

The concept behind this: The novel Expr<T> type.

The Necessity of One Slight Extension of SQL.

The underlying concept is inherently straightforward and
consequently, highly intuitive. The system is completely
type-checked, while formulas can contain any number of
parameters of any type.
Contrary to the previously mentioned design principle, the
declaration of a formula field necessitates a slight extension
of the SQL syntax.
Colbert introduces a novel field type, Expr<T>, where T can
be any of the known data types, such as int, string,
datetime, bool, or double. The SQL statement for creation of
the Employees table is now:

Create table Employees

(EmpId int, Name string, Salary double, Bonus

Expr<double>)

This marks the initiation of a discussion on the type
mechanism: Conventionally, the type of a formula is
determined by the result type and the number and type of



each formal parameter.
However, in the context of defining this formula field
Expr<T>, there is a lack of information regarding the formal
parameters. At this stage, it is intentionally preferred not to
define anything about them and allow any set of formal
parameters. However, it makes sense to define the result
type T so that it works just like any other field.

In the context of the example regarding Bonus calculation,
the Bonus formula can be any expression with any number
of formal parameters, as long as it yields a value that can be
implicitly typecast to double, when executed with the
correct actual parameters. This part of type checking is
enforced on entering an expression in a formula field.

For a more in-depth understanding of type
checking and error handling, please refer to the
upcoming blog post.

Two manifestations of a formula field

The Dual Nature of Formula Fields in SQL

A formula field manifests itself in two facets:
Code: the formula itself, represented by an

expression

Calculated: the calculated value derived from that
expression in an certain context af
parameters.

Upon invoking the name of the formula field in SQL, the
calculated manifestation is
evoked, with the exception of the SQL insert clause and
update clause.
In all other SQL instances where the formula field remains
unmentioned, such as in Select * from Employees,  the code
is evoked.



Enforcement of either manifestation can be achieved
through the utilization of the prefix operators code <formula
field> or calculated <formula field>, though their necessity is
infrequent.

Insert into Employees set

EmpId = 18,

Name = ‘William’,

Salary = 4000,

Bonus = (Revenue /

Target) * Salary

Bonus refers to the code of
the formula field

Update Employees

set Bonus = Salary * 0.04

where EmpId = 18

Bonus refers to the code of
the formula field

Select EmpId, Year, Name,

Bonus 

from Employees natural

join Sales

Bonus evokes the
calculated value of the
formula field 

Select

EmpId, Year, Name,

Revenue, Target,

code Bonus, calculated

Bonus

from Employees natural

join Sales

First Bonus evokes the
code while the second
evokes the calculated
value.                (*)

(*)This last SQL statement will produce the following
output (first rows only).
The operator calculated might be omitted as it is
default here. It will produce the same result when
omitted.

code of the formula and calculated value of the formula are
invoked



Parameter binding

The scope of parameters is defined by the place of

invocation and the parameters are identified by their

respective names.

As mentioned before, when entering an expression in a
formula field we do not know anything about the
parameters. They might be in the same table as the
formula field but the power of formula fields lies in the ability
to apply the formulas dynamically to data in in whatever
tables at whatever moment. Moreover, these formulas are
designed to accommodate any number of parameters,
regardless of their type or origin.

The binding of parameters occurs when the formula field is
called by its name in a SQL statement. The scope of
parameters is then defined by the place of invocation and
the parameters are identified by their respective names.

Consider the next SQL statement :

Select Name, Year, Bonus 

from Employees natural join Sales

The scope the formula field Bonus in this SQL statement are
all the fields from Employees and Sales. But instead of
providing actual parameters to the formal parameters
when the formula is called, Colbert searches for
corresponding names of the formal parameters within the
scope of the called formula.

This parsing, compiling, and parameter binding occur once
for each formula when it is called for the first time, and then
the compiled and binded formula is stored in the cache.
If the parameter cannot be found in that scope or if the
parameter has a type incompatible with the formula
evaluation, the formula field yields an error value. This part
of type checking is enforced on executing a formula field. 



Type error values function analogously to null values, and
Colbert incorporates effective mechanisms for their
handling. 

As a general guideline, any expression that could be
inputted in a calculated field within a SELECT statement is
permissible in a formula field, given the presence of the
relevant parameters within the current execution scope.

For a more in-depth understanding of type checking
and error handling, please refer to the upcoming blog
post.

Orthogonality

It is like playing with Lego blocks.

The concept of formula field, mirroring the overall design
philosophy of Colbert, is implemented without unnecessary
restrictions and adheres to the principle of orthogonality. It’s
like building with Lego blocks where each piece can
connect to any other piece, allowing for a wide range of
combinations and flexibility. This design principle can
contribute to cleaner, more modular code and make it
easier for developers to understand and work with the
feature.

A formula field therefore applies not only within a Select
clause, but also in a calculated field, a Where clause, an
order-by-clause or within window functions. Actually a
formula field can be applied just like any other field.
Consequently, all subsequent SQL statements are valid
within Colbert.

Select Empid, Year, Name,

Bonus div 100  

from Employees natural join

Sales;

in calculated field



Select Empid, Year, Name

from Employees natural join

Sales

where Bonus > 1000;  

in where clause

Select Year, Name, Bonus

from Employees natural join

Sales

order by Bonus desc;   

in order by clause

Select Year, sum Bonus, max

Bonus

from Employees natural join

Sales

group by Year;

in aggregation

Examples 
It’s rather odd that mathematical expressions couldn’t be
stored in database fields, considering these expressions
can represent relevant attributes of objects.
Consider, for example:

the bonus calculation mutually agreed upon with an
employer
the search criteria for finding a new car
tax calculations
criteria for the segmentation of a population
identification of risk factors.

A subsequent blog post will provide detailed insights into
additional use cases. Meanwhile, the following examples
serve to illustrate instances efficiently solvable through the
application of formula fields. In the absence of formula
fields, resolving these cases requires extensive
programming efforts external to the database, yielding a
less flexible solution.

1)  Example: matching cars and buyers



In the context of a database containing information about
used cars and another table with buyers specifying their
criteria for car searches, the power of a boolean formula
field becomes evident.
The table representing used cars resembles:

Cars

As a formula field is capable of producing results of any data
type, a boolean formula field could, for example, define an
individual’s interest in purchasing a particular used car.
The SQL statement for creating a table for this purpose
appears as follows:

Create table Buyer (Name String, Find Expr<Bool>);

Inserting a record in SQL:

Insert into Buyer

set Name = ‘Alex’, Find = Brand = ‘Porche’ and Price <

200500;

Entering values through Colbert’s user interface is more
convenient. Subsequently, the populated Buyer table could
have the following appearance:

Buyer

Colbert permits specific
operators to have an
identifier as an operand,
treating it as a string. This
applies for the right operand
of  the == operator.

Colbert features an
extended SQL known as
Slim SQL, which is detailed
in the upcoming blog post
about Slim SQL.



Given the tables Cars and Buyer one can effortlessly extract
relevant information by utilizing the formula field Find.

Matching cars to the buyer’s specified criteria

Select Name, Cars.* from

Buyer Join Cars where Find

Buyer matched Cars

Buyers for whom there is no corresponding matching car:

Select Buyer.* from

Buyer Outer Join Cars on Find

where Brand is null

Buyer no matched Car

Cars with multiple possible buyers:

Cars.*, Count desc as Lead from

Cars Join Buyer where Find and Lead > 1

Cars with multiple buyers

Colbert lets you sort in the
from clause, skip group by,
and apply where to
aggregated values.



Colbert features an
extended orthogonal SQL
known as Slim SQL, which
is detailed in the upcoming
blog post about Slim SQL.

2)  Example: Evaluating Populations
When assessing a dataset, several goals may be pursued.

The population could be categorized into cohorts.
Risk factors might be identified
Rules could be applied.

 
In the following example, each record in the Population is
assigned a Score based on specific criteria Def.

Create table Ranking

(Mnemonic string, Def Expr<bool>, Score

Expr<int>, Rank int)

Ranking

Population

Given the tables Population and Ranking, one can
effortlessly extract relevant information by utilizing the
formula fields Def and Score.

Aggregating the sum of all scores that satisfy the Def
conditions:



Select Name, sum (Mnemonic + ‘ ‘), sum Score

from Population outer join Ranking on Def

Population with Ranking
Mnemonic and Scores

Colbert automatically designates a
default  nomenclature for Calculated
Fields like SumMnemonic.

Colbert features an extended
orthogonal SQL known as Slim SQL,
which is detailed in the upcoming blog
post about Slim SQL.

Mnemonic for the match possessing the lowest rank.

Select Name, Rank, Mnemonic

from Population outer join first (Ranking by

rank)

on Def

First match by Rank

Colbert supports a first operator and
allows sorting in subquery. Omitting
Select * from is allowed and order by
may be abbreviating to by .

Colbert features an extended
orthogonal SQL known as Slim SQL,
which is detailed in the upcoming blog
post about Slim SQL.

A quick summary

forget the summary

In summary, Colbert proposes a straightforward approach
to handling formulas stored in database fields, consisting of
the following elements:

1. Introduction of a novel type, Expr<T>.
2. Implementation of a twofold type-check mechanism.



3. Invocation of the name of a formula field triggers the
evaluation of the corresponding expression.

4. Parameter binding is determined by the name of the
formal parameter in the expression.

5. The scope of formal parameters is defined by the
location of invocation.

Nevertheless, there is no need to memorize these
elements because the utilization of formula fields is intuitive
and simple

Various aspects of formula fields

Is it all sunshine and rainbows ?

There are various other aspects related to executing and
storing formulas in database fields. Here are some
common aspects related to this topic:

Best practice for storing formulas in database fields.
How to parse, type check, compile and execute
formulas stored in database fields.
Implementing formula field calculations in SQL
queries.
Security risks and best practices for handling user-
defined formulas.
Is SQL injection a hazard when using formula fields?
Optimizing performance of database queries involving
formula fields.
Caching strategies for formulas.
Real-world examples of scenarios where storing and
executing formulas in database fields is beneficial.
Existing approaches to storing formulas in database
fields.

Upcoming blog



Certain  aspects  have been addressed in the present
blog. Subsequent discussions in a forthcoming blog will
delve more extensively into several of the
aforementioned subjects.

Videos

Experience the Magic of Formulaic Concepts with Colbert

There are some videos available so you can see how easily
formulas can be applied in Colbert’s versatile user interface.

Bonus calculation:

Every employee has a different
bonus formula.

Video
(https://www.youtube.com/watch?

v=ohk_qlG5ULY)

More examples

Criteria matching: Buyers define
what second hand car they are
looking for.
Risk analysis: A set of risk criteria is
defined with corresponding risk
scores.
Cohort definition: A population is
defined into cohorts according to a
set of rules.

Video
(https://www.youtube.com/watch?

v=_Rn-7xzwFUY)

https://www.youtube.com/watch?v=ohk_qlG5ULY
https://www.youtube.com/watch?v=_Rn-7xzwFUY


Contact
Colbert

Netherlands

info@colbert.nl
(https://www.colbert.nl/mail-
form)



Colbert (https://www.colbert.nl/)
About Me(https://www.colbert.nl/about)

Mail form(https://www.colbert.nl/mail-form)

Articles(https://www.colbert.nl/#Articles)

© Bert Vegter 2024

https://www.colbert.nl/mail-form
https://www.colbert.nl/
https://www.colbert.nl/
https://www.colbert.nl/about
https://www.colbert.nl/mail-form
https://www.colbert.nl/#Articles

