
󾓦 󾓨

Run NixOS Integration Tests on

macOS

📆 March 8, 2024 by Jacek Galowicz

Menu

https://nixcademy.com/
https://nixcademy.com/
https://nixcademy.com/
https://nixcademy.com/index-de.html

Big news: You can now run NixOS integration tests on macOS without any

changes to the test! This article helps you set up your Mac and get going.

If this does not appear significant to you, chances are that you haven’t seen

what the NixOS integration test driver is capable of. In that case, you might

want to peek into the article that highlights some of the most impressive

integration tests of NixOS’s nixpkgs repository and the article about how the

NixOS integration test driver works, first.

Last week, Gabriella Gonzalez upstreamed changes on nixpkgs that made the

NixOS integration test driver finally run on macOS, too. This means that NixOS

integration tests still run normal NixOS VMs, but the qemu processes and the

Python test driver run natively on macOS.

These changes require the nixos-test and apple-virt capability flags set in Nix,

which is going to be auto-detected by Nix 2.19 and newer.

Continue to read this article to see how to get it to run on your Mac today.

Setting up macOS for NixOS Integration Tests

Of course, we need to install Nix first. If you haven’t, please have a look at the

article about how to install Nix and nix-darwin on macOS.

Then, to run NixOS integration tests on macOS, we need two prerequisites:

1. A Linux Builder (Can be a remote Linux machine, or the local linux-builder)

2. The system-features Nix capability flags need nixos-test and apple-virt

(Automatically detected on Nix 2.19 and newer)

The Linux builder could be any remote Linux machine that is configured as a

remote builder or the macOS linux-builder that already comes with nixpkgs. As

we have seen in the article about the linux-builder, it is tedious to install it

manually but very straightforward to do it with nix-darwin. Hence, we strongly

suggest configuring nix-darwin first as explained in this article, and then coming

back to follow the next steps.

https://nixcademy.com/2023/10/24/nixos-integration-tests/
https://nixcademy.com/2023/10/24/nixos-integration-tests/
https://nixcademy.com/2023/12/01/nixos-integration-tests-part-2/
https://nixcademy.com/2023/12/01/nixos-integration-tests-part-2/
https://github.com/NixOS/nixpkgs/pull/282401
https://github.com/NixOS/nix/commit/9277eb276bf0a942e88fcf499f6a6b9c262be853
https://nixcademy.com/2024/01/15/nix-on-macos/
https://nixos.org/manual/nix/stable/command-ref/conf-file#conf-system-features
http://nixcademy.com/2024/02/12/macos-linux-builder/
https://nixcademy.com/2024/01/15/nix-on-macos/

The alternative way to configure this without nix-darwin would be manually

editing /etc/nix/nix.conf and setting up the Linux builder manually using the

steps described in the Linux builder article.

The nix-darwin config snippet that performs both changes looks like this:

Running darwin-rebuild switch --flake <path/to/my/config> with these added

configuration attributes makes our Mac ready to go.

After everything goes well, we can check if everything is in order:

We are ready to go. Please note that the default Linux builder settings do not

yet provide high performance. To increase the performance of the Linux builder,

have a look at the Linux builder article, where we crank them up.

Run an Integration Test

To check if this works, we can now simply run:

configuration.nix

{ config, pkgs, lib, ... }:

{

 # Run the linux-builder as a background service

 nix.linux-builder.enable = true;

 # Add needed system-features to the nix daemon

 # Starting with Nix 2.19, this will be automatic

 nix.settings.system-features = [

 "nixos-test"

 "apple-virt"

];

}

$ nix show-config system-features

apple-virt apple-virtualization nixos-test

$ sudo launchctl list org.nixos.linux-builder

{

 "LimitLoadToSessionType" = "System";

 "Label" = "org.nixos.linux-builder";

 "OnDemand" = false;

 "LastExitStatus" = 0;

 "PID" = 604;

 "Program" = "/bin/sh";

 "ProgramArguments" = (

 "/bin/sh";

 "-c";

 "/bin/wait4path /nix/store && exec

/nix/store/ab8iafqq7x0r13dmsy82q99kddvwrarp-linux-builder-start";

);

};

https://nixos.org/manual/nix/stable/command-ref/conf-file#conf-system-features
https://nixcademy.com/2024/02/12/macos-linux-builder/
https://nixcademy.com/2024/02/12/macos-linux-builder/

We can also run one of the other ~700 official NixOS integration tests by

running nix -L build nixpkgs#legacyPackages.aarch64-

darwin.nixosTests.login. Please note that some/many of them might not

work as macOS support for the test driver is new and they have not been

tested on macOS, yet.

After some download and build time, You will see a lot of Linux boot and service

log messages scroll by and end up with the output of a successful test:

NixOS integration tests are now easy to run on macOS and nearly as fast as on Linux

For everyone who didn’t have time to study our other NixOS integration test-

related articles - this is a little overview of how to assemble your own test to

play with it yourself (this is essentially the same test that just ran):

We start with a flake.nix file in our repository that collects all the inputs and

calls a test.nix file. It doesn’t have to be in a separate file, but the runNixOSTest

pattern is most pleasant this way.

$ nix -L build github:tfc/nixos-integration-test-example

The test.nix file describes our test name, the VM network, and finally also the

actual test:

With these two files in a local folder, we can simply run nix -L build to run the

test. I suggest the -L parameter in the beginning because the log output is

interesting to watch while discovering what the NixOS integration test driver is

capable of.

What do do from here? Read part 1 and part 2 of our article series on the NixOS

integration test driver to get a taste of what it is capable of. Then, have a look

at the NixOS integration test driver documentation. Have fun!

Debugging Mode

flake.nix

{

 description = "Example NixOS Integration Tests";

 inputs = {

 nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";

 flake-parts.url = "github:hercules-ci/flake-parts";

 flake-parts.inputs.nixpkgs-lib.follows = "nixpkgs";

 };

 outputs = inputs: inputs.flake-parts.lib.mkFlake { inherit inputs; } {

 systems = [

 "x86_64-linux" "aarch64-linux" "aarch64-darwin" "x86_64-darwin"

];

 perSystem = { config, pkgs, ... }: {

 packages.default = pkgs.testers.runNixOSTest ./test.nix;

 # put the packages into `checks` so `nix flake check` runs them,

too

 checks = config.packages;

 };

 };

}

test.nix

{

 name = "An awesome test.";

 nodes = {

 machine1 = { pkgs, ... }: {

 # Empty config sets some defaults

 };

 machine2 = { pkgs, ... }: { };

 };

 testScript = ''

 machine1.wait_for_unit("network-online.target")

 machine2.wait_for_unit("network-online.target")

 machine1.succeed("ping -c 1 machine2")

 machine2.succeed("ping -c 1 machine1")

 '';

}

https://nixcademy.com/2023/10/24/nixos-integration-tests/
https://nixcademy.com/2023/12/01/nixos-integration-tests-part-2/

What to do when a test fails? Change something, watch complex minutes-

running tests run from beginning to end all over again and again, and hope that

the latest change finally fixes it? Surely not.

Debugging our Integration tests, as demonstrated in the last article, works right

out of the box.

We can run the NixOS integration test driver outside of Nix in the interactive

mode:

In the Python shell, we can use any of the functionality of the integration test

driver (see also the documentation).

The test definitions in the example repository from the last article contain

additional configuration that is only active in the interactive mode. With that,

the server VM of the echo test (same repo) for example, is also reachable via

SSH on the host port 2222, as shown in this screenshot:

$ nix run .#echo.driverInteractive -- --interactive

warning: Git tree '/Users/tfc/src/nixos-integration-test-example' is

dirty

Machine state will be reset. To keep it, pass --keep-vm-state

start all VLans

start vlan

running vlan (pid 3680; ctl /tmp/vde1.ctl)

(finished: start all VLans, in 0.00 seconds)

additionally exposed symbols:

 machine1, machine2,

 vlan1,

 start_all, test_script, machines, vlans, driver, log, os,

create_machine,

 subtest, run_tests, join_all, retry, serial_stdout_off,

serial_stdout_on,

 polling_condition, Machine

>>>

https://nixcademy.com/2024/03/01/nixos-integration-test-on-github/
https://nixos.org/manual/nixos/stable/#sec-running-nixos-tests-interactively
https://github.com/tfc/nixos-integration-test-example

This screenshot shows the interactive test driver for the echo test from the last article. It

has two VMs.

This way we can avoid having the full test run again and fail. Instead, we

discover what works on the running interactive VMs.

Summary

Being able to build Linux systems and also test them in the NixOS integration

test driver on macOS is a big enabler. This is especially true in the corporate

context where the big IT departments supply employees with either Windows

laptops or Macs.

The VMs are a bit slower on macOS, but with more users and some debugging,

this performance difference will most probably vanish over time.

Are you interested in unlocking this power at scale in your corporate

environment? We helped many companies get up to speed with Nix by both

training teams and setting up Nix build and cache infrastructure in ways that fit

into the existing IT landscape. We have helped companies win with Nix and

know what the winning setups look like. Schedule a free call with us today!

https://nixcademy.com/
https://nixcademy.com/meet.html

NIXCADEMY

If you are strategically investing in Nix and

NixOS, looking for NixOS training and

mentoring, and/or consulting, then the

Nixcademy is your place to go!

SERVICES

Nix & NixOS 101 Training

Advanced Nix Trainings

Individual Mentoring

Consulting

Blog

USEFUL LINKS

Nix & NixOS Cheatsheet

Impressum / Imprint

Datenschutz / Data Protection

CONTACT

hello@nixcademy.com

Schedule Meeting

+ 49 1523 7191800

© 2023 Copyright: Nixcademy.com

https://nixcademy.com/
https://nixcademy.com/advanced-classes.html
https://nixcademy.com/
https://nixcademy.com/
https://nixcademy.com/blog.html
https://nixcademy.com/cheatsheet.html
https://nixcademy.com/impressum.html
https://nixcademy.com/data-protection.html
mailto:hello@nixcademy.com
https://nixcademy.com/meet.html
https://nixcademy.com/

