
Nix is a powerful cross-platform package management tool.

The bene�ts of Nix are far reaching, but one big bene�t is

that once you adopt Nix, you can get a consistent

environment across development (on both Linux and Mac),

CI, and production.

I've been using Nix for many years and recently started

building Docker images using a Docker�le paired with Nix.

This post will explain the bene�ts of this approach along

with a basic example to show how it looks and feels.

Sorry, this is not a Nix introduction post. You don't

need to know how to use Nix to read this post, but I am

also not going to explain basic Nix concepts or

introduce the Nix language. If you do not know Nix, you

can still read this post and use it to determine if Nix is

interesting for you to learn.

Dockerfiles Are Easy, Why Nix?

Docker�les are quite easy -- you just chain together shell

commands -- so understandably there is some hesitation to

introduce a tool like Nix into the mix. The practical reason is

that if you use Nix, you'll get always-working environments

on local machines, CI, Docker, and more for free ; you have

little to no duplicated effort.

About

Writing

Misc

About

Writing

Misc

MITCHELL HASHIMOTO

Using Nix with Dockerfiles

1

April 23, 2023

https://mitchellh.com/
https://nixos.org/
https://twitter.com/mitchellh/status/1649503702456340483
https://mitchellh.com/
https://mitchellh.com/writing
https://mitchellh.com/misc
https://mitchellh.com/

A typical, non-Nix approach is to have a separate effort for

local development, CI, and Docker (we'll call Docker our

"production" environment since this blog post is about

building Docker images):

For local development, you may have a giant README,

may use Docker compose, may use Vagrant, etc.

Then, when you need to run or test your code in CI,

you're probably writing YAML de�nitions to setup the

environment again. A lot of times, the CI environment

is different enough that you have slightly different shell

requirements.

Finally, for production, you have a Docker�le with its

own set of shell commands to run to build your �nal

image.

Individually, this is �ne, although I'd argue still a bit

annoying. But when you put it all together, it is very

annoying and very brittle. I hope I'm not the only one that

has updated the local development environment and

Docker�le for a feature only to realize I broke CI. Or got my

development environment working and a green check mark

✅ on a PR only to realize that the production runtime is

now broken.

These problems all go away with Nix. Nix is your single

source of truth of what you need to build and run your

software. You update this single source of truth and it

generally just works everywhere. You don't need to

maintain multiple descriptions of how to build and run your

software anymore.

https://www.vagrantup.com/

I'm serious, I haven't had a "works on my machine [but

not on others]" issue in years. Not a single one. I'm

actively trying to work through my Nix God complex. It

has been so long that when I see non-Nix users

complain about issues getting software to run in

various environments, I'm truly confused. It's like

someone looking at a river and lamenting about having

to wade through to cross it while I'm riding a bicycle

across a bridge.

This is just one bene�t, but I think it is the most practical

one. Nix purists will tout other things such as purism,

reproducibility, powerful language, etc. This is all true, but I

think the real pain point is you want your environments to

Just Work.

In isolation, I submit to you that using Nix with Docker is

mostly just harder than using Docker by itself. But by

realizing the compounding bene�ts of using Nix to then be

able to enhance your CI and development environments

with the same con�guration, using Nix with Docker becomes

easier than using Docker by itself and also has numerous

other practical bene�ts.

I'm going to focus on Docker images in this blog

post, so I won't be showing how to use the same

con�guration for CI, development, etc. in any sort of

detail. There are numerous blog posts on these topics.

For local development environments, see Nix and

Direnv. For CI, take a look at my own GitHub Actions

work�ows.

The Big Idea

2

https://www.reddit.com/r/NixOS/comments/kauf1m/dealing_with_post_nixflake_god_complex/
https://determinate.systems/posts/nix-direnv
https://determinate.systems/posts/nix-direnv
https://github.com/mitchellh/libxev/blob/e7d4e6dfd208b4d90715766f92aeaf0163e4bdd9/.github/workflows/test.yml#L48
https://github.com/mitchellh/libxev/blob/e7d4e6dfd208b4d90715766f92aeaf0163e4bdd9/.github/workflows/test.yml#L48

I want to explain the big idea at a high level, then I'll show a

real example with code and shell commands. The idea is:

1. Write Nix code to describe how to build and run your

application.

2. Use a Docker�le and the of�cial Nix image to build your

application using Nix using roughly one shell command.

3. Use a multi-stage build `FROM scratch` to copy your

built application into the smallest possible image. This

�nal image doesn't have Nix installed at all -- we just

used Nix to build.

Step 1 is the reusable bit. This same code can also be used to

build a development or CI environment. As noted earlier, I

won't go into detail about that in this blog post.

There are other "Nix and Docker" blog posts out there that

use only Nix to build Docker images and don't use `docker`

or Docker�les at all. That is possible and completely �ne,

but I wanted to write about using a Docker�le because it is

likely more familiar and less intimidating to people and

because so many tools in the ecosystem often ingest and

use Docker�les.

An Example: Python and Flask

As a real world example, I will use Nix to build a Docker

image for running a Flask web application. The complete

code is available on GitHub.

The Python App

We aren't here to learn to learn Flask, so you can view the

Flask application code in `src/app.py`. It looks roughly like

the below code block. It is just the Flask quickstart code to

output "Hello World" on the root page.

https://hub.docker.com/r/nixos/nix
https://flask.palletsprojects.com/
https://github.com/mitchellh/flask-nix-example

Nix Flake

Next, we need to create a Nix �ake to describe how to build

your application. A Nix �ake is a kind of Nix environment

that describes how to create development environments,

build packages, etc. It is similar to a `pyproject.toml` or

`Cargo.toml` or `go.mod` or `package.json` and so on,

but for Nix.

The Nix �ake is in `flake.nix` and looks like this:

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello_world():

 return "<p>Hello, World!</p>"

{

 description = "flask-example";

 inputs = {

 nixpkgs.url = "github:nixos/nixpkgs/release-22

 flake-utils.url = "github:numtide/flake-utils"

 };

 outputs = { self, nixpkgs, flake-utils }:

 flake-utils.lib.eachDefaultSystem (system:

 let pkgs = import nixpkgs { inherit system;

 in with pkgs; rec {

 # Development environment

 devShell = mkShell {

 name = "flask-example";

 nativeBuildInputs = [python3 poetry];

 };

 # Runtime package

 packages.app = poetry2nix.mkPoetryApplicat

 projectDir = ./.;

 };

 # The default package when a specific pack

 defaultPackage = packages.app;

 }

Did you just tell me to go f *ck myself? (Comic)

Before I learned Nix, this is usually how I felt whenever

someone dropped a block of Nix code. Seeing any

unfamiliar code for the �rst time is usually intimidating

and on top of that Nix isn't the most aesthetically

pleasing, but please hang in there since this is the last

time you'll see Nix code in this blog post and its mostly

inconsequential to the remainder of this post.

Most of this is boilerplate. The key bits are the lines with

`devShell` and `packages.app`. `devShell` creates our

development environment with Python and Poetry

installed. And `packages.app` describes how to build our

�nal package. Nix has �rst-class knowledge of Poetry, so we

can just ask it to build our Poetry application. Most

mainstream languages have a similar high-level helper to

make using Nix easier.

Install Nix on your system and you can verify everything

works by running `nix build`. This should build the

package and you can run the application at

`result/bin/app`.

);

}

$ nix build

...

$ result/bin/app

 * Serving Flask app 'src.app'

 * Debug mode: off

 * Running on http://127.0.0.1:5000

Press CTRL+C to quit

https://pbs.twimg.com/media/EfzCjAPWkAAS3Qs?format=png
https://python-poetry.org/
https://github.com/DeterminateSystems/nix-installer

Pause! This is low-key amazing. If you're unfamiliar

with Nix, the impressiveness of what just happened

may have gone unnoticed. Take a look at what

`result/bin/app` is (`cat` it) and follow that rabbit

hole. It is a script to run your Python app that depends

only on Nix-installed software. It does not depend on or

con�ict with your local system at all. If you have other

versions of Python, Flask, etc. installed, it won't matter

at all; your app is perfectly packaged.

Dockerfile

Now let's bring it all together with Docker. Here is the

`Dockerfile`:

Nix builder

FROM nixos/nix:latest AS builder

Copy our source and setup our working dir.

COPY . /tmp/build

WORKDIR /tmp/build

Build our Nix environment

RUN nix \

 --extra-experimental-features "nix-command fla

 --option filter-syscalls false \

 build

Copy the Nix store closure into a directory. The

entire set of Nix store values that we need for

RUN mkdir /tmp/nix-store-closure

RUN cp -R $(nix-store -qR result/) /tmp/nix-store-

Final image is based on scratch. We copy a bunch

but they're fully self-contained so we don't nee

FROM scratch

WORKDIR /app

Copy /nix/store

COPY --from=builder /tmp/nix-store-closure /nix/st

COPY --from=builder /tmp/build/result /app

CMD ["/app/bin/app"]

This is a multi-stage build. We �rst start with our `builder`

container which is based on `nixos/nix`. This is the Nix

of�cial base image that just has `nix` installed.

In this builder, we �rst run `nix build`:

This is just what we did earlier. The extra �ags are to ensure

the Nix command has `flakes` available (they're still

marked as experimental) and the `filter-syscalls` option

lets Apple Silicon cross-compile to Intel if you want.

The next step is:

This is the critical step. `nix store -qR result` outputs

the full list of Nix directories that our application needs.

Speci�cally, it is the closure of dependencies that only our

application needs. I know this can be confusing, so to put it

one �nal way: it is the smallest possible set of dependencies

(�les and folders) that our application needs to run and

literally nothing else.

Finally, we use a `from scratch` container to build our

�nal image:

RUN nix \

 --extra-experimental-features "nix-command fla

 --option filter-syscalls false \

 build

RUN mkdir /tmp/nix-store-closure

RUN cp -R $(nix-store -qR result/) /tmp/nix-store-

FROM scratch

WORKDIR /app

COPY --from=builder /tmp/nix-store-closure /nix/st

COPY --from=builder /tmp/build/result /app

CMD ["/app/bin/app"]

https://docs.docker.com/build/building/multi-stage/

We copy our closure into `/nix/store`, which ensures that

we have all the dependencies our application needs. Then

we copy the `result` symlink to `/app`. Then, we set

`/app/bin/app` as the entrypoint. This is similar to how we

ran `resuilt/bin/app` above when testing our Nix �le.

Try it!

Build and run the Docker image:

Downsides

There aren't many downsides to building Docker images this

way, but in the interest in intellectual honesty, I'll note as

many as I can think of.

The most obvious downside is that this requires Nix

knowledge. Nix has a reputation for not being particularly

easy to learn. In recent years, Nix documentation has

improved greatly and there are additional resources like

Zero to Nix which help a lot. Additionally the Nix Installer

landscape has gotten much, much better.

Given the non-zero time cost to learning Nix, I think this

downside is only worth it if you plan on using Nix for

additional functionality such as CI or development

environments as well. In my opinion, if you end up learning

Nix this is inevitable because it's just so dang nice.

$ docker build -t flask-example:dev .

...

$ docker run --rm flask-example:dev

 * Serving Flask app 'src.app'

 * Debug mode: off

 * Running on http://127.0.0.1:5000

Press CTRL+C to quit

https://zero-to-nix.com/
https://github.com/DeterminateSystems/nix-installer

Another downside is that the layers produced in the Docker

image are not optimal. The single `RUN nix build`

command produces a giant layer with all the dependencies

in it. From a build-time perspective, this is really fast

because almost all of your dependencies will be downloaded

from a binary cache. But, it is not optimal for caching and

basically every redeploy will require your runtime

environment to redownload the largest layer of your image.

Nix is able to make more optimal Docker image layers by

using the native Nix `dockerTools` to build an image

instead of a Docker�le, but the whole point of this blog post

is to show you the Docker�le approach.

Next

I think that was pretty easy. The Docker�le is less than 15

lines (without comments) and by using Nix its using the

exact same code you'd use to build your development and CI

environments, so its all shared logic. The Docker�le never

has to change.

This uses a plain-old Docker�le so it integrates really nicely

with tools you're likely familiar with already such as

`docker`, various CI/CD tools, PaaS offerings, etc.

Finally, you get all the extra bene�ts of Nix: your Docker

image has the smallest possible set of �les to run your

application and nothing more, the contents of your Docker

image are reproducible (metadata may change the hash of

the image itself), etc. These may or may not be important to

you, but they have no downside and you get them for free.

As I said earlier, the bene�ts of this approach compound

greatly when you start reusing your Nix con�guration for

other environments such as local development and CI.

Therefore, I recommend using this approach to enhance

your current Nix usage or as a gateway to more expanded

Nix usage.

1. With the arguably high up front cost of learning Nix, yes, but I
think the payoff is way higher than the cost of admission. ↩

2. ❤ you folks, but trying to reach the masses! ↩

© 2024 Mitchell Hashimoto.

https://twitter.com/mitchellh
https://hachyderm.io/@mitchellh
https://github.com/mitchellh
https://www.linkedin.com/in/mitchellh

