
notes.billmill.org / blog / 2024 / 03 /

How I use git worktrees
Mar 05, 2024

My favorite feature of git is one that not enough people know about: worktrees.

Worktrees allow you to store branches of your repository in separate directories.

This means you can switch branches by changing directory, instead of switching between branches
in the same directory with git checkout  or git switch .

I've never seen anybody describe using worktrees quite the way I do, so I thought I'd write out how I
like to work with them.

Project structure
When I create or clone a project, I create a project directory and then clone the main  branch into a
subfolder of that directory.

If I were working on a weather app, the directory structure after this might look like:

Then I would go into the main  directory and start working on the project as normal.

Since I rarely want to work on the main branch directly, I generally start by creating a worktree for
whatever my next task is.

The git command to make a worktree for a branch called update-node-deps , assuming I'm in the
main  directory, would be git worktree add ../update-node-deps update-node-deps .

Unfortunately, the UI of the git worktree add  command leaves a lot to be desired, so I've become
dependent on my own worktree command that wraps it.

Improving the UI

https://notes.billmill.org/
https://notes.billmill.org/blog.html
https://notes.billmill.org/blog/2024.html
https://notes.billmill.org/blog/2024/03.html
https://notes.billmill.org/images/Pasted%20image%2020240305155055.png
https://notes.billmill.org/images/Pasted%20image%2020240305155055.png
https://github.com/llimllib/personal_code/blob/daab9eb1/homedir/.local/bin/worktree#L1


There are some small annoyances my worktree  script handles for me

You need to type the branch name twice; once to tell git where to put the directory and again to
select the branch

worktree  makes a sensible directory name from the branch name so you only have to
type it once

If you want to create a new branch, you have to add a -b  argument to worktree add
worktree  checks for an existing branch, creates a tracking worktree if it's found, and
otherwise assumes you want a new branch

After you create a worktree, you have to cd  into it
worktree  will change you into your new directory automatically if you source it

That means I usually call it like . worktree new-feature-branch , so that I'm
brought right to the directory

And one big one that would be a dealbreaker for me.

git worktree doesn't copy untracked files

If your directory has a node_modules  folder, or you use direnv so it has a .envrc  file, or you have
any other type of local files that don't live in the git repo, you might find the bare git worktree
command annoying.

On my large work repository, npm install  takes almost two full minutes; if I had to npm install
every time I made a worktree, I'd be much less likely to use it.

If you're a javascript developer, you may have felt the pain of node_modules  even when using
normal git branches; if you create a new branch, remove a package, then switch back to the main
branch, you'll be unable to run any code that depends on that package until you npm install  again.

The solution that I've come up with is that for every untracked file and directory that I care about,
my worktree  script creates a copy-on-write copy of the file or directory into the new worktree
directory.

This means that when I run . worktree new-feature , I am dropped into the new-feature
branch, with all my tools ready to work and able to focus on the new feature rather than on setting
up my environment.

Why I like to work this way

After I've been working in my project for a while, its directory structure might look something like
this, where each directory is a worktree:

https://miro.medium.com/v2/resize:fit:1200/1*PntM_kvfSfkFDZ5wk6kmGQ.png
https://notes.billmill.org/computer_usage/direnv.html
https://github.com/llimllib/personal_code/blob/daab9eb1/homedir/.local/bin/worktree#L35-L58


What I love about this is that I can work on a feature branch like verify-user-input , drop that
work to fix a bug in another directory, file a PR, then go right back to working on my feature branch
while I wait for code review.

If somebody later on leaves a comment on my bug fix PR that I want to address, I can jump right
back into the directory containing its worktree and make the change without having to pay any cost
for switching tasks - I can just change directories instead of modifying one all-singing-all-dancing
working directory.

In this way, I have branches that are a bit less stateful than the normal way of using git.

I find it especially useful that I always have a checkout of the main  branch handy. If I'm working on
a feature, and I want to see what was in the main branch before I changed it, I can grep against the
main  directory instead of remembering how to pull that info out of git. If somebody asks a question
about what the app does, I can go look at the code in main  without having to throw away my
working state - I just change directories.

Removing worktrees

To remove a worktree, you can use git worktree remove <branch> , or just delete the directory
containing the worktree and use git worktree prune . I have an rmtree script as well, but it's
much simpler than worktree .

https://notes.billmill.org/images/Pasted%20image%2020240305155412.png
https://notes.billmill.org/images/Pasted%20image%2020240305155412.png
https://github.com/llimllib/personal_code/blob/daab9eb1da9f777df57c742e5629247a94b54947/homedir/.local/bin/rmtree


The only tricky bit I know with removing worktrees is that removing a worktree won't remove a
branch; you've also got to use git branch -D <branch>  if you want to get rid of it.

I don't expect you to use my scripts

I haven't written this post because I want to advertise my worktree  and rmtree  scripts; I wrote
them for my specific workflow and it's unlikely to be a perfect fit for you.

However, I do think that git worktrees are pretty useful and that you might want to look into using
them in your own workflow.

Backlinks:

git worktrees step-by-step

↑ up

by Bill Mill. Generated by obsidian_notes

https://notes.billmill.org/computer_usage/git/git_worktrees_step-by-step.html
https://notes.billmill.org/
https://billmill.org/
https://github.com/llimllib/obsidian_notes/

