
A homelab dashboard for

NixOS

I run a very small homelab that provides some basic services to my home

network. I’m not much of a data hoarder, but my lab consists of some

redundant storage in a `raidz2` ZFS pool, and I use the homelab as a

receive-only target for Syncthing, and as the point from which backups of my

critical data are made using Borg & Borgbase.

It also runs a few other small services - all of which are exclusively available

over Tailscale to my other devices. I wanted a small dashboard solution that

could give me links to each of those services with a nice simple URL.

There are certainly plenty of options; this seems to be a highly crowded

space in the open source homelab world. I settled on the rather ambiguously

named homepage. At the time of writing, my dashboard looks like so, though

there are people who have been far more creative with the appearance!

Naturally, I wanted to run this on NixOS, so in July 2023 I landed one of my

early contributions to the project in the form of PR #243094 which added the

Introduction

https://www.raidz-calculator.com/raidz-types-reference.aspx
https://syncthing.net/
https://www.borgbackup.org/
https://www.borgbase.com/
https://gethomepage.dev/
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/01.png
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/01.png
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/01.png
https://github.com/NixOS/nixpkgs/pull/243094

package (named `homepage-dashboard`), a basic NixOS module and a basic

test.

Homepage is configured using a set of YAML files named `services.yaml`,

`bookmarks.yaml`, `widgets.yaml`, etc. When I originally started writing the

module, it would look for those config files in a hard-coded location

(`/config`), and if the files were missing it would copy a skeleton config into

place with some defaults to get you going.

The hard-coded location results from the fact that the upstream primarily

support deploying Homepage using Docker. They expect the config directory

to be bind-mounted into the container from the host. As part of the initial

packaging effort, I contributed a patch upstream to allow customising this

location by setting the `HOMEPAGE_CONFIG_DIR` environment variable, which I

then set in the systemd unit configuration in the NixOS module to

`/var/lib/homepage-dashboard`.

This has been working fine for a few months, but it’s been bugging me that

my dashboard configuration is not part of the declarative system

configuration. Once the initial skeleton had been copied in place, you were

left to edit the files manually (and back them up) if you wanted to make

changes. Moreover, `homepage` defaults to creating a `logs` directory as a

subdirectory of the `config` directory. This makes some sense in a container

environment, but given that homepage also logs to stdout (which is collected

by the systemd journal on NixOS), it’s really just unnecessary duplication.

Before writing the actual implementation of the module, I decided to first

sketch out what I wanted my NixOS configuration to look like:

Homepage’s Configuration

Evolving The Module Design

 1

 2

 3

 4

{

 services.homepage-dashboard = {

 # These options were already present in my configuration.

 enable = true;

↑

https://github.com/gethomepage/homepage/tree/6b961abc4e73b924f780b1cb32481640213fd477/src/skeleton
https://github.com/gethomepage/homepage/tree/6b961abc4e73b924f780b1cb32481640213fd477/src/skeleton
https://github.com/gethomepage/homepage/pull/1673
https://github.com/NixOS/nixpkgs/pull/243094/files#diff-e4532095c5cc6e132e60ca8a1fa0589898576aa2073624135c1086cbc7e78a7cR38

Each of the new sections would then map neatly to the different

configuration section in the upstream documentation. Based on my learning

from the Scrutiny module, I wanted to utilise the same RFC42 approach

which would obviate the need for the module to specify every possible

supported configuration option, resulting in a large, difficult to maintain

module which could quickly fall behind the upstream project.

Homepage supports a large number of widgets (see below) which are able to

scrape information from the API of various devices and services. These often

require an API key or token of some kind, and having those in plaintext as

part of the machine configuration is undesirable from a security perspective -

even if your services are all on a private network like mine. Luckily I found

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 package = unstable.homepage-dashboard;

 # The following options were what I planned to add.

 # https://gethomepage.dev/latest/configs/settings/

 settings = {};

 # https://gethomepage.dev/latest/configs/bookmarks/

 bookmarks = [];

 # https://gethomepage.dev/latest/configs/services/

 services = [];

 # https://gethomepage.dev/latest/configs/service-widgets/

 widgets = [];

 # https://gethomepage.dev/latest/configs/kubernetes/

 kubernetes = { };

 # https://gethomepage.dev/latest/configs/docker/

 docker = { };

 # https://gethomepage.dev/latest/configs/custom-css-js/

 customJS = "";

 customCSS = "";

 };

}

https://gethomepage.dev/latest/configs/
https://gethomepage.dev/latest/configs/
https://jnsgr.uk/2024/02/contributing-scrutiny-to-nixpkgs/
https://github.com/NixOS/rfcs/blob/master/rfcs/0042-config-option.md
https://gethomepage.dev/latest/widgets/

out (tucked away in the docs) that Homepage can inject secret values into

the configuration using environment variables.

Given the template value of `{{HOMEPAGE_VAR_FOOBAR}}` as part of the

configuration, Homepage will automatically substitute the value of the

variable `HOMEPAGE_VAR_FOOBAR`.

I decided to provide a single configuration option named `environmentFile`

so that users can supply the path to an environment file containing all of

their variables. This file can be omitted from Git repositories and

configurations, or included in encrypted form. I achieve this by including the

file encrypted using `agenix` which integrates @FiloSottile’s wonderful `age`

into NixOS. You can see how that’s supplied as part of my nixos-config.

According to my relatively naive Github search I estimated that there are not

that many users of the module - likely in the tens, rather than the hundreds

or thousands. That said, I think its important not to break those users.

There’s no reason to expect that a `nix flake update` should break your

system.

The way I chose to handle this in the module was to check if any of the new

config options are set. If they’re not, the module behaves as before, but

displays a deprecation warning:

Backwards Compatibility

https://gethomepage.dev/latest/installation/docker/#using-environment-secrets
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/02.png
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/02.png
https://github.com/ryantm/agenix
https://github.com/FiloSottile
https://age-encryption.org/
https://github.com/jnsgruk/nixos-config/blob/ab46f2b45aea11634c85c2c2024eac1c4f5601e0/host/common/services/homepage/thor.nix#L2-L9
https://github.com/search?q=language%3Anix+homepage-dashboard+NOT+is%3Afork+NOT+repo%3ANixOS%2Fnixpkgs&type=code
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/03.png
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/03.png

The implementation of this check is relatively crude, but it works, and it will

only be around until the release of NixOS 24.05 (in May 24):

I mentioned in a previous section that Homepage logs to both stdout and a

logs directory by default. While the log file path can be customised, it’s not

currently possible to disable the file logging completely. It’s not desirable to

have the log file in this context, because all of the logs are collected by

systemd anyway.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

config =

 let

 # If homepage-dashboard is enabled, but none of the configuration v

 # then default to "unmanaged" configuration which is manually updat

 # var/lib/homepage-dashboard. This is to maintain backwards compati

 # deprecated in a future release.

 managedConfig = !(

 cfg.bookmarks == [] &&

 cfg.customCSS == "" &&

 cfg.customJS == "" &&

 cfg.docker == { } &&

 cfg.kubernetes == { } &&

 cfg.services == [] &&

 cfg.settings == { } &&

 cfg.widgets == []

);

 configDir = if managedConfig then "/etc/homepage-dashboard" else "/

 msg = "using unmanaged configuration for homepage-dashboard is depr

 + " in 24.05. please see the NixOS documentation for `services.ho

 + " your bookmarks, services, widgets, and other configuration us

 in

 lib.mkIf cfg.enable {

 # Display the deprecation warning if the configuration isn't manage

 warnings = lib.optional (!managedConfig) msg;

...

Solving Log Duplication

https://gethomepage.dev/latest/configs/settings/#log-path

Looking at the upstream implementation, the logger is instantiated and

configured in a single `logger.js` file. Homepage has a policy that they

won’t accept feature contributions (even if you do the implementation)

unless the feature gets at least 10 upvotes. I filed a feature request, but it’s

yet to get enough votes to be accepted.

In the mean time I wrote a short patch on a branch in my personal fork which

makes Homepage adhere to an environment variable named `LOG_TARGETS`.

The possible values are `both`, `file` or `stdout` with a default value of

`both` to respect the existing behaviour and remain backward compatible.

The patch is now applied in the Nix package as part of nixpkgs, and the

module configures the systemd unit by setting the `LOG_TARGETS` variable to

`stdout` in cases where the configuration is managed:

When I originally implemented the tests for the module, they simply enabled

the service and ensure that it responded on the specified port. I wanted to

include some logic in the test that ensured the ability to detect when

managed configuration should be used, and when the module should respect

an existing implementation.

The NixOS test suite supports specifying multiple machines as part of a given

test, so extending the previous implementation wasn’t particularly

cumbersome. See below for the (annotated) implementation:

1

2

3

4

5

6

7

8

9

{

 # ...

 environment = {

 HOMEPAGE_CONFIG_DIR = configDir;

 PORT = toString cfg.listenPort;

 LOG_TARGETS = lib.mkIf managedConfig "stdout";

 };

 # ...

}

Bolstering The Test Suite

 1

 2

import ./make-test-python.nix ({ lib, ... }: {

 name = "homepage-dashboard";

https://github.com/gethomepage/homepage/blob/6b961abc4e73b924f780b1cb32481640213fd477/src/utils/logger.js#L41-L68
https://github.com/gethomepage/homepage/discussions/3067
https://github.com/gethomepage/homepage/commit/3be28a2c8b68f2404e4083e7f32eebbccdc4d293
https://github.com/NixOS/nixpkgs/blob/6dc8cbe3cc1520315d85c3e4490b50a73c7c7381/pkgs/servers/homepage-dashboard/default.nix#L42-L54
https://github.com/NixOS/nixpkgs/blob/6dc8cbe3cc1520315d85c3e4490b50a73c7c7381/nixos/modules/services/misc/homepage-dashboard.nix#L223-L227

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

 meta.maintainers = with lib.maintainers; [jnsgruk];

 # Create a machine that uses the legacy module format,

 # where configuration is unmanaged by nix, and relies

 # upon YAML files.

 nodes.unmanaged_conf = { pkgs, ... }: {

 services.homepage-dashboard.enable = true;

 };

 # Create another machine that sets some simple

 # configuration using the new module system. This

 # doesn't need to be exhaustive, just enough to trigger

 # the condition that makes the module use managed config.

 nodes.managed_conf = { pkgs, ... }: {

 services.homepage-dashboard = {

 enable = true;

 settings.title = "custom";

 };

 };

 testScript = ''

 # Ensure the services are started on unmanaged machine,

 # and that the service responds to HTTP requests on the

 # expected port.

 unmanaged_conf.wait_for_unit("homepage-dashboard.service")

 unmanaged_conf.wait_for_open_port(8082)

 unmanaged_conf.succeed("curl --fail http://localhost:8082/")

 # Ensure that /etc/homepage-dashboard doesn't exist, and boilerplat

 # configs are copied into place in `/var/lib/homepage-dashboard`.

 # This validates the existing behaviour.

 unmanaged_conf.fail("test -d /etc/homepage-dashboard")

 unmanaged_conf.succeed("test -f /var/lib/private/homepage-dashboard

 # Ensure the services are started on managed machine,

 # and that the service responds to HTTP requests on the

 # expected port.

 managed_conf.wait_for_unit("homepage-dashboard.service")

 managed_conf.wait_for_open_port(8082)

 managed_conf.succeed("curl --fail http://localhost:8082/")

 # Ensure /etc/homepage-dashboard is created and unmanaged

 # conf location isn't present

 managed_conf.succeed("test -d /etc/homepage-dashboard")

This is by no means exhaustive, and I can certainly imagine increasing the

coverage here at a later date, but it does at least give some confidence when

working on the module that the two basic modes of operation are functioning

correctly.

If you have been using the module in its past form, you may be wondering

what the easiest way to migrate to the new format is…

I made the shift using `yaml2nix` to convert my existing YAML configurations

to Nix expressions, and then formatted the output using `nixpkgs-fmt`. For

example, given the following `settings.yaml` (which came from my homelab

before I moved over):

47

48

49

 managed_conf.fail("test -f /var/lib/private/homepage-dashboard/sett

 '';

})

Migrating Existing Configurations

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

For configuration options and examples, please see:

https://gethomepage.dev/en/configs/settings

title: sgrs dashboard

favicon: https://jnsgr.uk/favicon.ico

headerStyle: clean

layout:

 media:

 style: row

 columns: 3

 infra:

 style: row

 columns: 4

 machines:

 style: row

 columns: 4

https://github.com/euank/yaml2nix
https://github.com/nix-community/nixpkgs-fmt

You can do the following to get a Nix expression that can be assigned to

`services.homepage-dashboard.settings` in your machine configuration,

converting the YAML to a Nix expression:

 ~/temp

❯ nix run nixpkgs#yaml2nix settings.yaml

{ title = "sgrs dashboard"; favicon = "https://jnsgr.uk/favicon.ico"; hea

With that output, you can insert a few line breaks and rely on `nixpkgs-fmt`

to get everything lined up properly. You can see my complete dashboard

configuration in Nix format as part of my nixos-config repository.

The PR was merged earlier today, and will now need to trickle through the

branches on its way to `nixos-unstable`. At the time of writing, it hasn’t quite

made it there:

Summary

https://github.com/jnsgruk/nixos-config/blob/ab46f2b45aea11634c85c2c2024eac1c4f5601e0/host/common/services/homepage/thor.nix
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/04.png
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/04.png
https://jnsgr.uk/2024/03/a-homelab-dashboard-for-nixos/04.png

You can track for yourself on the nixpkgs tracker, but the time delay should

give you a chance to migrate your configuration!

See Github for the full module implementation, package and tests.

Let me know if you’re using the module, or if you run into any issues! If

you’re a fan of Homepage, then consider helping out with the project or

sponsoring them on Github, and once again thank you to those who helped

review and shape the module as part of this upgrade!

https://nixpk.gs/pr-tracker.html?pr=291554
https://github.com/NixOS/nixpkgs/blob/6dc8cbe3cc1520315d85c3e4490b50a73c7c7381/nixos/modules/services/misc/homepage-dashboard.nix
https://github.com/NixOS/nixpkgs/blob/6dc8cbe3cc1520315d85c3e4490b50a73c7c7381/pkgs/servers/homepage-dashboard/default.nix#L42-L54
https://github.com/NixOS/nixpkgs/blob/6dc8cbe3cc1520315d85c3e4490b50a73c7c7381/nixos/tests/homepage-dashboard.nix
https://github.com/sponsors/gethomepage

