
BLOG

React Labs: What We've Been
Working On – March 2023
March 22, 2023 by Joseph Savona, Josh Story, Lauren Tan, Mengdi Chen, Samuel Susla,

Sathya Gunasekaran, Sebastian Markbåge, and Andrew Clark

In React Labs posts, we write about projects in active research and

development. We’ve made significant progress on them since our last update,
and we’d like to share what we learned.

React Server Components

React Server Components (or RSC) is a new application architecture designed by the

React team.

We’ve first shared our research on RSC in an introductory talk and an RFC. To recap

them, we are introducing a new kind of component—Server Components—that run

ahead of time and are excluded from your JavaScript bundle. Server Components can

run during the build, letting you read from the filesystem or fetch static content. They

can also run on the server, letting you access your data layer without having to build an

API. You can pass data by props from Server Components to the interactive Client

Components in the browser.

RSC combines the simple “request/response” mental model of server-centric Multi-

Page Apps with the seamless interactivity of client-centric Single-Page Apps, giving you

the best of both worlds.

Since our last update, we have merged the React Server Components RFC to ratify the

proposal. We resolved outstanding issues with the React Server Module Conventions

Search Ctrl K

https://react.dev/blog
https://twitter.com/en_JS
https://twitter.com/joshcstory
https://twitter.com/potetotes
https://twitter.com/mengdi_en
https://twitter.com/SamuelSusla
https://twitter.com/_gsathya
https://twitter.com/sebmarkbage
https://twitter.com/acdlite
https://react.dev/blog/2022/06/15/react-labs-what-we-have-been-working-on-june-2022
https://react.dev/blog/2020/12/21/data-fetching-with-react-server-components
https://github.com/reactjs/rfcs/pull/188
https://github.com/reactjs/rfcs/blob/main/text/0188-server-components.md
https://github.com/reactjs/rfcs/blob/main/text/0227-server-module-conventions.md
https://github.com/facebook/react/releases
https://react.dev/

proposal, and reached consensus with our partners to go with the "use client"

convention. These documents also act as specification for what an RSC-compatible

implementation should support.

The biggest change is that we introduced async / await as the primary way to do data

fetching from Server Components. We also plan to support data loading from the client

by introducing a new Hook called use that unwraps Promises. Although we can’t support

async / await in arbitrary components in client-only apps, we plan to add support for it

when you structure your client-only app similar to how RSC apps are structured.

Now that we have data fetching pretty well sorted, we’re exploring the other direction:

sending data from the client to the server, so that you can execute database mutations

and implement forms. We’re doing this by letting you pass Server Action functions

across the server/client boundary, which the client can then call, providing seamless RPC.

Server Actions also give you progressively enhanced forms before JavaScript loads.

React Server Components has shipped in Next.js App Router. This showcases a deep

integration of a router that really buys into RSC as a primitive, but it’s not the only way to

build a RSC-compatible router and framework. There’s a clear separation for features

provided by the RSC spec and implementation. React Server Components is meant as a

spec for components that work across compatible React frameworks.

We generally recommend using an existing framework, but if you need to build your own

custom framework, it is possible. Building your own RSC-compatible framework is not as

easy as we’d like it to be, mainly due to the deep bundler integration needed. The current

generation of bundlers are great for use on the client, but they weren’t designed with

first-class support for splitting a single module graph between the server and the client.

This is why we’re now partnering directly with bundler developers to get the primitives

for RSC built-in.

Asset Loading

Suspense lets you specify what to display on the screen while the data or code for your

components is still being loaded. This lets your users progressively see more content

while the page is loading as well as during the router navigations that load more data and

code. However, from the user’s perspective, data loading and rendering do not tell the

whole story when considering whether new content is ready. By default, browsers load

https://github.com/reactjs/rfcs/pull/229
https://react.dev/learn/start-a-new-react-project#nextjs-app-router
https://react.dev/reference/react/Suspense

stylesheets, fonts, and images independently, which can lead to UI jumps and

consecutive layout shifts.

We’re working to fully integrate Suspense with the loading lifecycle of stylesheets, fonts,

and images, so that React takes them into account to determine whether the content is

ready to be displayed. Without any change to the way you author your React

components, updates will behave in a more coherent and pleasing manner. As an

optimization, we will also provide a manual way to preload assets like fonts directly from

components.

We are currently implementing these features and will have more to share soon.

Document Metadata

Different pages and screens in your app may have different metadata like the <title>

tag, description, and other <meta> tags specific to this screen. From the maintenance

perspective, it’s more scalable to keep this information close to the React component for

that page or screen. However, the HTML tags for this metadata need to be in the

document <head> which is typically rendered in a component at the very root of your

app.

Today, people solve this problem with one of the two techniques.

One technique is to render a special third-party component that moves <title> ,

<meta> , and other tags inside it into the document <head> . This works for major

browsers but there are many clients which do not run client-side JavaScript, such as

Open Graph parsers, and so this technique is not universally suitable.

Another technique is to server-render the page in two parts. First, the main content is

rendered and all such tags are collected. Then, the <head> is rendered with these tags.

Finally, the <head> and the main content are sent to the browser. This approach works,

but it prevents you from taking advantage of the React 18’s Streaming Server Renderer

because you’d have to wait for all content to render before sending the <head> .

This is why we’re adding built-in support for rendering <title> , <meta> , and metadata

<link> tags anywhere in your component tree out of the box. It would work the same

https://react.dev/reference/react-dom/server/renderToReadableStream

way in all environments, including fully client-side code, SSR, and in the future, RSC. We

will share more details about this soon.

React Optimizing Compiler

Since our previous update we’ve been actively iterating on the design of React Forget, an

optimizing compiler for React. We’ve previously talked about it as an “auto-memoizing

compiler”, and that is true in some sense. But building the compiler has helped us

understand React’s programming model even more deeply. A better way to understand

React Forget is as an automatic reactivity compiler.

The core idea of React is that developers define their UI as a function of the current

state. You work with plain JavaScript values — numbers, strings, arrays, objects — and

use standard JavaScript idioms — if/else, for, etc — to describe your component logic.

The mental model is that React will re-render whenever the application state changes.

We believe this simple mental model and keeping close to JavaScript semantics is an

important principle in React’s programming model.

The catch is that React can sometimes be too reactive: it can re-render too much. For

example, in JavaScript we don’t have cheap ways to compare if two objects or arrays are

equivalent (having the same keys and values), so creating a new object or array on each

render may cause React to do more work than it strictly needs to. This means

developers have to explicitly memoize components so as to not over-react to changes.

Our goal with React Forget is to ensure that React apps have just the right amount of

reactivity by default: that apps re-render only when state values meaningfully change.

From an implementation perspective this means automatically memoizing, but we

believe that the reactivity framing is a better way to understand React and Forget. One

way to think about this is that React currently re-renders when object identity changes.

With Forget, React re-renders when the semantic value changes — but without incurring

the runtime cost of deep comparisons.

In terms of concrete progress, since our last update we have substantially iterated on the

design of the compiler to align with this automatic reactivity approach and to incorporate

feedback from using the compiler internally. After some significant refactors to the

compiler starting late last year, we’ve now begun using the compiler in production in

limited areas at Meta. We plan to open-source it once we’ve proved it in production.

https://react.dev/blog/2022/06/15/react-labs-what-we-have-been-working-on-june-2022#react-compiler

Finally, a lot of people have expressed interest in how the compiler works. We’re looking

forward to sharing a lot more details when we prove the compiler and open-source it. But

there are a few bits we can share now:

The core of the compiler is almost completely decoupled from Babel, and the core

compiler API is (roughly) old AST in, new AST out (while retaining source location data).

Under the hood we use a custom code representation and transformation pipeline in

order to do low-level semantic analysis. However, the primary public interface to the

compiler will be via Babel and other build system plugins. For ease of testing we

currently have a Babel plugin which is a very thin wrapper that calls the compiler to

generate a new version of each function and swap it in.

As we refactored the compiler over the last few months, we wanted to focus on refining

the core compilation model to ensure we could handle complexities such as conditionals,

loops, reassignment, and mutation. However, JavaScript has a lot of ways to express

each of those features: if/else, ternaries, for, for-in, for-of, etc. Trying to support the full

language up-front would have delayed the point where we could validate the core model.

Instead, we started with a small but representative subset of the language: let/const,

if/else, for loops, objects, arrays, primitives, function calls, and a few other features. As

we gained confidence in the core model and refined our internal abstractions, we

expanded the supported language subset. We’re also explicit about syntax we don’t yet

support, logging diagnostics and skipping compilation for unsupported input. We have

utilities to try the compiler on Meta’s codebases and see what unsupported features are

most common so we can prioritize those next. We’ll continue incrementally expanding

towards supporting the whole language.

Making plain JavaScript in React components reactive requires a compiler with a deep

understanding of semantics so that it can understand exactly what the code is doing. By

taking this approach, we’re creating a system for reactivity within JavaScript that lets

you write product code of any complexity with the full expressivity of the language,

instead of being limited to a domain specific language.

Offscreen Rendering

Offscreen rendering is an upcoming capability in React for rendering screens in the

background without additional performance overhead. You can think of it as a version of

the content-visibility CSS property that works not only for DOM elements but React

components, too. During our research, we’ve discovered a variety of use cases:

A router can prerender screens in the background so that when a user navigates to

them, they’re instantly available.

A tab switching component can preserve the state of hidden tabs, so the user can

switch between them without losing their progress.

A virtualized list component can prerender additional rows above and below the
visible window.

When opening a modal or popup, the rest of the app can be put into “background”
mode so that events and updates are disabled for everything except the modal.

Most React developers will not interact with React’s offscreen APIs directly. Instead,

offscreen rendering will be integrated into things like routers and UI libraries, and then

developers who use those libraries will automatically benefit without additional work.

The idea is that you should be able to render any React tree offscreen without changing

the way you write your components. When a component is rendered offscreen, it does

not actually mount until the component becomes visible — its effects are not fired. For

example, if a component uses useEffect to log analytics when it appears for the first

time, prerendering won’t mess up the accuracy of those analytics. Similarly, when a

component goes offscreen, its effects are unmounted, too. A key feature of offscreen

rendering is that you can toggle the visibility of a component without losing its state.

Since our last update, we’ve tested an experimental version of prerendering internally at

Meta in our React Native apps on Android and iOS, with positive performance results.

We’ve also improved how offscreen rendering works with Suspense — suspending

inside an offscreen tree will not trigger Suspense fallbacks. Our remaining work involves

finalizing the primitives that are exposed to library developers. We expect to publish an

RFC later this year, alongside an experimental API for testing and feedback.

Transition Tracing

The Transition Tracing API lets you detect when React Transitions become slower and

investigate why they may be slow. Following our last update, we have completed the

initial design of the API and published an RFC. The basic capabilities have also been

implemented. The project is currently on hold. We welcome feedback on the RFC and

https://developer.mozilla.org/en-US/docs/Web/CSS/content-visibility
https://react.dev/reference/react/useTransition
https://github.com/reactjs/rfcs/pull/238

look forward to resuming its development to provide a better performance

measurement tool for React. This will be particularly useful with routers built on top of

React Transitions, like the Next.js App Router.

In addition to this update, our team has made recent guest appearances on community

podcasts and livestreams to speak more on our work and answer questions.

Dan Abramov and Joe Savona were interviewed by Kent C. Dodds on his YouTube

channel, where they discussed concerns around React Server Components.

Dan Abramov and Joe Savona were guests on the JSParty podcast and shared their

thoughts about the future of React.

Thanks to Andrew Clark, Dan Abramov, Dave McCabe, Luna Wei, Matt Carroll, Sean

Keegan, Sebastian Silbermann, Seth Webster, and Sophie Alpert for reviewing this post.

Thanks for reading, and see you in the next update!

PREVIOUS

React Canaries: Enabling

Incremental Feature Rollout

Outside Meta

NEXT

Introducing react.dev

How do you like these docs?

Take our survey!

©2024

Learn React API Reference

https://react.dev/learn/start-a-new-react-project#nextjs-app-router
https://twitter.com/dan_abramov
https://twitter.com/en_JS
https://www.youtube.com/watch?v=h7tur48JSaw
https://www.youtube.com/watch?v=h7tur48JSaw
https://twitter.com/dan_abramov
https://twitter.com/en_JS
https://jsparty.fm/267
https://twitter.com/acdlite
https://twitter.com/dan_abramov
https://twitter.com/mcc_abe
https://twitter.com/lunaleaps
https://twitter.com/mattcarrollcode
https://twitter.com/DevRelSean
https://twitter.com/DevRelSean
https://twitter.com/sebsilbermann
https://twitter.com/sethwebster
https://twitter.com/sophiebits
https://react.dev/blog/2023/05/03/react-canaries
https://react.dev/blog/2023/03/16/introducing-react-dev
https://www.surveymonkey.co.uk/r/PYRPF3X
https://opensource.fb.com/
https://opensource.fb.com/
https://opensource.fb.com/
https://react.dev/learn
https://react.dev/reference/react

Quick Start

Installation

Describing the UI

Adding Interactivity

Managing State

Escape Hatches

React APIs

React DOM APIs

Community

Code of Conduct

Meet the Team

Docs Contributors

Acknowledgements

More

Blog

React Native

Privacy

Terms

https://react.dev/learn
https://react.dev/learn/installation
https://react.dev/learn/describing-the-ui
https://react.dev/learn/adding-interactivity
https://react.dev/learn/managing-state
https://react.dev/learn/escape-hatches
https://react.dev/reference/react
https://react.dev/reference/react-dom
https://react.dev/community
https://github.com/facebook/react/blob/main/CODE_OF_CONDUCT.md
https://react.dev/community/team
https://react.dev/community/docs-contributors
https://react.dev/community/acknowledgements
https://react.dev/blog
https://reactnative.dev/
https://opensource.facebook.com/legal/privacy
https://opensource.fb.com/legal/terms/
https://www.facebook.com/react
https://twitter.com/reactjs
https://github.com/facebook/react

