
htmz
a low power tool for html

htmz is a minimalist HTML microframework that gives you the power to

create modular web user interfaces with the familiar simplicity of plain

HTML. [GitHub]

🍦🍦🍦🍦🍦🍦plain

Use straight up HTML. No supersets. No hz- ng- hx- v- w- x-; no special

attributes. No DSLs. No <custom-elements>. Just vanilla HTML.

🪶🪶🪶🪶🪶🪶lightweight

176 bytes in total. Zero dependencies. Zero JS bundles to load. Not even a

backend is required. Just an inline HTML snippet.

⚡⚡⚡⚡⚡⚡nofilter

No preventDefaults. No hidden layers. Real DOM, real interactions. No

VDOM, no click listeners. No AJAX, no fetch. No reinventing browsers.

In a nutshell, htmz lets you swap page fragments using vanilla HTML

code.

Imagine clicking a link, but instead of reloading the whole page, it only

updates the relevant portion of the page.

htmz is an experiment inspired by htmx, Comet, ‘HTML As The Engine Of

Application State’[1][2], and other similar web application architectures.

=>

https://github.com/Kalabasa/htmz
https://htmx.org/
https://en.wikipedia.org/wiki/Comet_(programming)
https://en.wikipedia.org/wiki/HATEOAS
https://htmx.org/essays/hateoas/

Demos

Check out these demos to get an idea of what htmz can do!

Tabs Greeting Edit inline Dialog More examples
#

🐙 Select an example above!

Installing

Simply copy the following snippet into your page:

<iframe hidden name=htmz onload="setTimeout(()=>document.query

Selector(this.contentWindow.location.hash||null)?.replaceWith

(...this.contentDocument.body.childNodes))"></iframe>

For npm enjoyers, the following npm commands automate the process of

copying the snippet into your page:

npm install --save-dev htmz

npx htmzify ./path/to/my/index.html

For hackers, you may start with the development version (deminified):

htmz.dev.html

https://leanrada.com/htmz/demos/tabs/index.html#demos-tab-panel
https://leanrada.com/htmz/demos/hello/index.html#demos-tab-panel
https://leanrada.com/htmz/demos/edit/index.html#demos-tab-panel
https://leanrada.com/htmz/demos/dialog/index.html#demos-tab-panel
https://github.com/Kalabasa/htmz/blob/master/htmz.dev.html

Basic usage

To invoke htmz, you need a hyperlink (or form) having these attributes:

1. href (or action) pointing to the resource URL href="/flower.html⋯

2. Continuing within the href: destination ID selector ⋯#my-element"

3. And a target attribute with this value target=htmz

Flower

While this looks like an abuse of the URL fragment (it is), there is no other

use for the URL fragment in this context, so it was repurposed as the

destination ID selector. And it already looks like a CSS ID selector.

⚠ Important note: The loaded content replaces the selected destination.

It may not be intuitive at first, but htmz does not insert the content into the

destination. The rationale is that replacement is a more powerful operation.

With replacement, you can replace, delete (replace with nothing), and

insert-into (replace with the same container as original).

What does it do exactly?

htmz does one thing and one thing only.

Enable you to load HTML resources within any element in the

page.

Think tabbed UIs, dual-pane list-detail layouts, dialogs, in-place editors, and

the like.

This idea is not new. Dividing web pages into independently reloading parts

has been a thing since mid-1990s. They were called frames, namely,

<iframe>s, <frame>s, and <frameset>s.

htmz is a generalisation of HTML frames. — Load HTML resources

within any frame any element in the page.

Read more on how it works in a section below.

<!-- Loads /flower.html onto #my-element -->

https://www.w3.org/TR/html401/present/frames.html

Examples

More example applications, componentization approaches, and code in

different languages can be found in the /examples directory. To start the

example server:

cd examples

./run_servers.sh

Then load http://localhost:3000/.

Advanced usage

Naturally, only <a> and <form> elements can target and invoke htmz (as of

current HTML5). This is fine; it’s semantic, after all. However, HTML offers a

couple more features that work well with htmz.

Per-button action & target

If you want to override the form’s action on a per-button basis, use the

<button>’s formaction attribute.

<form action="/default#my-target" target=htmz>

 <button>Default form action</button>

 <button formaction="/button#my-target">

 Different button action

 </button>

 <button formaction="/another-action#another-target">

 Another action

 </button>

</form>

Base target value

Tired of adding target=htmz to every link and form?

Using the base element, set htmz as the default target for all relative links.

Add this at the top of your page.

<base target=htmz>

Clean target values

Don’t like the look of target=htmz at all? Prefer using the real target as the

value?

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button#formaction
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base

We can do a hack that enables you to write the target ID selector in the

target attribute itself! Like this:

Flower

The key is to add an iframe with a matching name, and modify the htmz

snippet accordingly.

<iframe hidden name="#my-element" onload="htmz(this)"></iframe>

<script>

 function htmz(frame) {

 document.querySelector(frame.name)

 ?.replaceWith(...frame.contentDocument.body.children);

 }

</script>

You can even automate the generation of matching target iframes.

Scripting / interactivity

If you need something more interactive than the request-response model,

you may try the htmz companion scripting language: javazcript. Sorry, I

meant JavaScript, a scripting language designed to make HTML interactive.

htmz does not preclude you writing JS or using UI libraries to enhance

interaction. You could, say, enhance a single form control with vanillaJS, but

the form values could still be submitted as a regular HTTP form with htmz.

That said, htmz is extensible!

Extensibility

Need advanced selectors? Need error handling? Multiple targets? Fear not;

the hero is here to save the day. The hero is you.

Here’s the development version of the snippet. Feel free to hack and extend

according to your needs. You’re a programmer, right?

<!-- Loads /flower.html onto #my-element -->

// use the iframe's name instead of the

https://github.com/Kalabasa/htmz/blob/master/examples/cf_clean_target_tabs/worker.js
http://vanilla-js.com/
https://github.com/Kalabasa/htmz/blob/master/htmz.dev.html

<script>

 function htmz(frame) {

 // Write your extensions here

 setTimeout(() =>

 document

 .querySelector(frame.contentWindow.location.hash || null)

 ?.replaceWith(...frame.contentDocument.body.children)

);

 }

</script>

<iframe hidden name=htmz onload="htmz(this)"></iframe>

A number of extensions will be available in the custom builder (coming

soon!).

FAQ

How does it work?

htmz is an iframe named "htmz". You invoke htmz by loading a URL into the

iframe via target=htmz. By using an iframe, we lean on the browser’s native

capability to fetch the URL and parse the HTML. After loading the HTML

resource, we take the resulting DOM via an onload handler.

htmz is essentially a proxy target.

Like how a proxy server forwards requests to some specified server, proxy

target htmz forwards responses into some specified target.

Flower

Flower

// Remove setTimeout to let the browser autoscroll content changes into vi

<!-- The ideal:

 GET /flower.html => #my-element -->

<!-- Actual:

 GET /flower.html =htmz> #my-element -->

When you load a URL into the htmz iframe, the onload handler kicks in. It

extracts your destination ID selector from the URL hash fragment and

transplants the iframe’s contents (now containing the loaded HTML

resource) into your specified destination.

htmz only runs when you invoke it. It does not continually parse your DOM

and scan it for special attributes or syntax, nor does it attach listeners in

your DOM. It’s a proxy not a VPN.

So it’s just another JavaScript framework?

Oh my! Not the f-word!!!

On a more serious note, I would say that rather than a JS one, it’s more of an

HTML micro-f*******k. It does use JS, but only the minimum necessary.

Is htmz a library or a framework?

htmz is a snippet. ✂

What does htmz mean?

HTMZ stands for Html with Targeted Manipulation Zones.

Is this a joke?

This started as a “Do I really need htmx? Can’t I do the load-link-into-target

thing with current web? Sounds a lot like frames.” and ended up with this.

So, it isn’t quite a joke, but a response to htmx. I wanted to try htmx. The

premise sounded great (Why should you only be able to replace the entire

screen?), then I saw that it was 16kB of JavaScript. Huh. Then there’s special

syntax everywhere. Huh. I don’t want to learn a whole new set of

instructions and Turing-complete DSLs specific to those instructions.

Regardless of joke status, htmz seems fine as a library. It feels kinda

powerful for its tiny size. (But really it’s the browser that’s doing the heavy

lifting!) Nonetheless, there are limitations.

What are the limitations?

The main direct limitation is having only one destination per response.

However, this can be fixed by writing an extension. ;)

A more general but classic limitation is the request-response model. The

Web 1.0 model, and the baggage that comes with it. Like a roundtrip delay

on every interaction, a browser history entry on every click, etc.

The Web 1.0 model might also mean putting more UI logic in the web server.

This can be a good thing or a bad thing, as it could either lead to

consolidation or fragmentation of UI logic, which respectively decreases or

increases complexity. It really depends on your goal and style.

htmz= >

