
@ Nikita Lapkov About Posts RSS

What's that touchscreen in my room?

2024-01-20

Discussion on HackerNews and Lobsters.

Roughly a year ago I moved into my new apartment. One of the reasons I picked

this apartment was age of the building. The construction was finished in

2015, which ensured pretty good thermal isolation for winters as well as

small nice things like Ethernet ports in each room. However, there was one

part of my apartment that was too new and too smart for me. This thing:

https://laplab.me/
https://laplab.me/
https://laplab.me/posts/
https://laplab.me/posts/index.xml
https://news.ycombinator.com/item?id=39063242
https://lobste.rs/s/ylejdi/what_s_touchscreen_my_room

It is obviously a touchscreen of some sort, but there was zero indication as

to what it controls. The landlord had no idea what this is. There are no

buttons or labels on the thing, just a tiny yellow light to let you know it

has the power.

I had a million questions, but I was too busy with the move and kinda of

forgot about it until about a week ago. I was looking through a huge binder

of various appliance manuals for my apartment when this thing slided out:

Wait a second, that’s my touchscreen! Turns out it is a part of an energy

monitoring system, which tells you current energy usage and has the ability

to display historical data. That actually sounds pretty neat - I would be

interested to see energy usage patterns of my house.

Brochure also mentioned a second part of the so-called “energy manager”,

which was directly plugged into an electricity meter to get usage

information. I went to inspect communal cupboard housing electricity meters -

and sure enough, there it was, just standing in the corner. I never even

noticed these boxes before, but they at least have the same branding as the

brochure - some company creatively named “NETTHINGS”.

Pretty straightforward so far. We have two devices, one “server” gathering

the data and another one “client” reading the data. Now the distance between

them is actually very short - just a few meters and maybe 2-3 walls, totally

reasonable setup for a cable connection. It was at that moment when I noticed

a weird sticker in the corner of the brochure. There were two strings printed

with labels “SSID” and “Pwd”. I froze in horror. They wouldn’t dare. It is

literally 3 meter distance. These are embedded devices, they do not need this

complexity…

And of course the two devices communicate using WiFi. Now that was unusual

for me, since I am not an embedded developer. But a friend of mine, who

worked on smart home features for one voice assistant told me that this is

actually a pretty common thing to do in IoT space. C in IoT stands for “cost-

effective” I guess.

Moving on, I needed to somehow turn on the weird touchscreen. Upon closer

inspection, I noticed a small hole on the side, which looked a lot like

something you insert a pin into to reset the device:

I held a hidden button with a wire for a few seconds and was greeted by…an

Android bootup logo! Yes, this turned out to be in fact an Android tablet,

and a pretty old one at that. It has Google Talk, Flash and all kinds of

other interesting stuff pre-installed:

From what I can tell, this is an Android 5, but I am not exactly sure. One of

the apps stands out with a familiar name: “NetThings”. Launching it leads us

to the screen where we select a WiFi network. Unfortunately, the one that is

mentioned on the brochure, was not on the list. I double-checked the list,

tried to refresh it, looked for WiFi networks using my other devices, tried

to directly connect to the WiFi using the credentials, but no luck.

When I came back to the meter room I noticed the obvious: boxes for all other

apartments had the light on, but mine was off for some reason:

I live in the UK and if anything, this is a country of electrical fuses. The

more fuses the better, everything is fused, even some plugs. Fuses for

certain appliances come in separate boxes with a small drawer that can slide

out, allowing to replace the fuse. It looks like this:

As you can see, my fuse box did not have a fuse inside for some reason. No

fuse - no electrical connection, no power for the energy manager and no WiFi

hotspot. Thanks to the fuse box design, it is easy to replace one, but I did

not know what kind of amperage should be allowed in the circuit. Luckily, I

had a few working energy managers in the same cupboard, so I opened their

boxes (cutting the power to them for a few seconds) to see what kind of fuses

they use. Turns out, I need a 3A fuse, so I ordered one from Amazon and

installed it the next day.

To be honest, the whole thing was a bit scary, since I was very close to the

mains. After installation, I checked the temperature of the fuse multiple

times during the day to get at least some indication that things are not

going to get worse. It worked fine for a more than a week now, but I still do

not recommend experiments like this to anyone.

After installing the replacement fuse, energy manager started blinking with

green LEDs and the promised WiFi network appeared on all devices. Once I

selected the network on the Android tablet, it changed to the following

screen:

When tapped, it changes to this menu, inviting the user to select what kind

of resource they want to monitor. Nothing here actually works except for

“Mains Electricity” because that’s the only meter the energy manager is

hooked up to.

“Mains Electricity” leads us to the most dissapointing screen in the history

of UX design:

Ugh, where to start. What’s up with this color indicator on the right? What

does the vertical position mean? If it is green, does it mean that I am using

a small amount of electricity or just a normal one? What exactly is small? If

it gets all the way to the top, is it compared to my historical maximum

usage? Over what period of time?

Out of 5 numbers displayed to the left of the indicator, only one is actually

true - number of kW consumed. All other numbers depend on the energy provider

and definitely changed since the time this monitor was installed.

I saved best for last. The amount of money you pay as well as estimate of CO2

per kW is not configurable. According to the brochure, it was configurable

during the initial installation, but it has no information on how to reset

the system back into configurable state.

Finally, brochure says the following:

I have no idea why they decided to include this. Of course the clock on

Android tablet shifted by almost 15 minutes since 2015, when it was

supposedly installed.

The whole thing was quite dissapointing. However, I do have a few Raspberry

Pico microcontrollers lying around at home. If I could connect to the WiFi

network of the energy manager directly and get the data from the server, I

could just extract kW consumption from the API, multiply it by a correct rate

and then display it on some Grafana instance.

The main problem was that I do not know the IP of the server. I was just

about ready to launch a full IP scan from laptop when I noticed that one of

the use cases brochure advertised is checking the energy usage from the PC.

The IP and port were conveniently provided together with the instructions.

Opening it in the browser displays a familiar screen:

Turns out, interface on the Android tablet is just a webview. This makes our

job that easier, since we can just go to the web inspector and see all the

API calls. Looking at the URLs we see…

…Socket.IO! Wow, I honestly did not expect that. Client literally needs to

receive 5 numbers from the server, Socket.IO seems to be a complete overkill

for this usecase. The client code also looks very complicated for what it

does. There are at least 6 RequireJS modules, all loading dynamically through

different requests of course. There is Handlebars, Backbone.js,

Underscore.js… I feel like I am in high school again. These are all

technologies I was very interested when I just started web development.

But wait a second, Socket.IO would mean that an embedded device in my meters

cupboard is running JavaScript? This must be weirdest Edge Computing Platform

I have seen in my life. I want to deploy something there!

Totally forgetting the idea with Raspberry Pico fetching the data from the

server, I put on my hacker hat and started poking around. IoT devices have a

terrible reputation from the security perspective, so I expected it to be an

easy run for a couple of hours tops. Boy was I wrong.

Direct SSH using ssh root@172.16.0.254 immediately fails with “Connection

refused” error. That could mean a number of things, let’s see which ports are

available:

$ sudo nmap -p- -sV -O 172.16.0.254

... truncated output ...

Nmap scan report for 172.16.0.254

Host is up (0.011s latency).

Not shown: 65530 closed tcp ports (reset)

PORT STATE SERVICE VERSION

53/tcp open domain dnsmasq 2.63rc6

80/tcp open http Node.js (Express middleware)

1534/tcp open micromuse-lm?

3000/tcp open http Node.js (Express middleware)

41142/tcp open ssh OpenSSH 6.2 (protocol 2.0)

Now this is interesting. As expected, we see a Node.js server running. We

also have dnsmasq , which is a DHCP server (makes sense, since the device is

a WiFi access point) and a hidden SSH server on port 41142.

SSH connection is no longer refused, but the root turned out to be password-

protected. None of the simple username/password combinations like

admin/admin or root/root worked, so we are essentially back to square one.

https://laplab.me/posts/how-did-i-become-database-engineer-at-23/

However, nmap detected an unrecognized service on port 1534 called

micromuse-lm . The first Google result is the following forum post:

I do not know who you are @ljohnson , but may your life be happy and

prosperous. This post does not give a lot of information, but it provides one

with the correct keywords to continue the search. The main phrase here is

tcf-agent . The concrete description of what is going on here is spread atom-

thin across several websites, all of which expect you to know the

terminology. Each of these websites provides you with a tiny piece of the

puzzle and you are expected to combine it together on your own. So after a

few hours and lots of cursing, here is what I know about tcf-agent :

TCF stands for “Target Communications Framework”. It is a text protocol,

which allows to read the filesystem, start new processes, send signals to

processes and a lot more with the target system. tcf-agent is the server

implementing this protocol or, in another words, probably the second biggest

security vulnerability after passwordless root SSH. I do not understand why

they went into all this trouble with SSH passwords, but kept tcf-agent

running.

TCF seems to be closedly tied to Eclipse ecosystem. The Getting Started guide

suggests several plugins for Eclipse as the main way to interact with tcf-

agent . I tried installing these plugins on a new version of Eclipse and it is

absolutely impossible. There are dependency issues everywhere and when you

actually try to install the missing dependencies, Eclipse does not let you

https://support.xilinx.com/s/question/0D52E00007IPix4SAD/broadcasts-to-port-1534?language=en_US
https://elinux.org/TCF
https://download.eclipse.org/tools/tcf/tcf-docs/TCF%20Getting%20Started.html

because they conflict with some other dependencies. It’s a mess, which is

exactly how I imagined this interaction to go.

Conveniently, TCF project has a Python SDK. As with everything during this

research, I needed to go through 3 links on different websites to actually

find one. First, we are met with this lovely page:

Which has a link that leads to here, which has a very small text pointing out

that the repo moved to this Gitlab repository. Phew. The repo even has a few

fresh commits, which seems a bit suprprising to me, as TCF in general gives

off vibes of an abandoned project.

Nevertheless, the repository contains a pretty modern Python 3 (!) SDK, even

with some inline documentation. It is not perfect, some docs are outdated,

some methods are very weird, but you can pretty easily figure out what’s

going on from the code. Protocol specification here and here are a huge help

in this process.

In a nutshell, a tcf-agent provides a bunch of services that expose various

parts of the system. For example, there is a FileSystem service for all

interactions with the filesystem, Processes service for

https://wiki.eclipse.org/TCF/Python_Scripting
https://git.eclipse.org/c/tcf/org.eclipse.tcf.git/tree/python/src/tcf
https://gitlab.eclipse.org/eclipse/tcf/tcf
https://download.eclipse.org/tools/tcf/tcf-docs/TCF%20Specification.html
https://download.eclipse.org/tools/tcf/tcf-docs/TCF%20Services.html

starting/stopping/debugging processes, etc. Here is an example of getting

current user information:

import tcf

from tcf.util.sync import CommandControl

tcf.protocol.startEventQueue()

cmd = CommandControl(tcf.connect('TCP:172.16.0.254:1534'))

error, user = cmd.FileSystem.user()

print(user)

And that’s how we learned that tcf-agent , in fact, runs under the root

user. Again, why bother with SSH passwords if you leave a debug server with

root access - this I will never understand.

FileSystem and Processes services have other functions, roughly

corresponding to syscalls. You can pretty easily replicate alternatives to

common commands like ls , cat , ps and the like using this API. Now I say

“pretty easily”, but in reality that was 4 hours of guessing the protocol

format, trying to the find the documentation, fixing bugs in the SDK, all on

an extremely unstable WiFi connection from an embedded device. Fun times. You

can find the results in this Github repo.

Now that we have basic instruments, let’s get to hacking! My first attempt

was to crack the root password, as I still believed it was something trivial.

I used John the Ripper password cracker in the following way

`cat.py` fetches file contents from the energy manager

using `FileSystem` TCF service.

$./cat.py /etc/passwd > passwd.txt

$./cat.py /etc/shadow > shadow.txt

$ unshadow passwd.txt shadow.txt > passwords.txt

$ john passwords.txt

I left it running for roughly 7 hours, but it did not find a match. John

reported that it will finish its brute-force in the year 2035, so I decided

to try out a different approach.

After a bit of Googling, I found out that one can simply make root’s password

empty by modifying /etc/shadow . Having done just that, I powercycled the

https://github.com/laplab/tcf-tools
https://github.com/openwall/john
https://unix.stackexchange.com/a/533599

device by removing the fuse I installed previously and putting it back after

some time. Unfortunately, SSH still rejected my login attempts.

More out of desperation than anything else, I decided to look at sshd config

of the host and finally found the offending line. sshd_config had

PermitRootLogin no line included, which is a very sensible security measure

as long as you are not providing a full disk access to anyone on the network.

I replaced the line with PermitRootLogin yes and finally, I saw the output I

was struggling for:

We are in! God, that was quite a journey, wasn’t it? Let’s look around!

root@nt-core:~# uname -srm

Linux 3.10.28 armv5tejl

We can see that we are running Linux 3.10, which is actually quite a recent

release (middle of 2013), considering this device was developed and installed

roughly in 2014-2015. Unsurprisingly for an embedded device, it is powered by

an ARM chip:

root@nt-core:~# cat /proc/cpuinfo

processor : 0

model name : ARM926EJ-S rev 5 (v5l)

BogoMIPS : 226.09

Features : swp half fastmult edsp java

CPU implementer : 0x41

CPU architecture: 5TEJ

CPU variant : 0x0

CPU part : 0x926

CPU revision : 5

Hardware : Freescale MXS (Device Tree)

Revision : 0000

Serial : 0000000000000000

We have an ARM9 family CPU. Wikipedia says that it was released in 2001, with

a list of notable mentions including being a coprocessor for Nintendo Wii.

The fact I find even more surprising is that this processor supports

executing Java bytecode directly. Yep, you read that right, the java in the

list of CPU features actually means that Java. The ARM extension for this

feature was called Jazelle. This seemed to be some kind of a trend around

2000s, since this is not the first time I encounter such feature.

root@nt-core:~# cat /proc/meminfo

MemTotal: 118172 kB

...truncated...

Lastly, we have 118MB of RAM. I am not an embedded Linux expert, but this

does seem like a lot after tinkering with Raspberry Pi Pico and such. At the

same time, it makes sense, since we do have a Node.js app running on the host

and JavaScript isn’t exactly a memory-efficient language.

The app itself is quite a sizeable codebase. Despite the fact that the

company that made the device and software for it is already dissolved, I

don’t want to risk being sued over releasing the source code. I am pretty

sure nobody would actually care, but I still want nothing to do with it. So

instead we will just look at some file lists.

Top-level directory structure looks like this:

root@nt-core:/srv/server# ls -la

drwxr-xr-x 13 nodejs nogroup 4096 Oct 23 10:47 .

drwxr-xr-x 3 root root 4096 Oct 14 12:13 ..

-rw-r--r-- 1 nodejs nogroup 8125 Oct 14 12:13 Gruntfile.js

-rw-r--r-- 1 nodejs nogroup 1916 Oct 14 12:13 app.js

drwxr-xr-x 2 nodejs nogroup 4096 Oct 14 12:13 app_data

drwxr-xr-x 10 nodejs nogroup 4096 Oct 14 12:13 bin

-rw-r--r-- 1 nodejs nogroup 1278 Oct 14 12:13 bower.json

https://en.wikipedia.org/wiki/ARM9
https://en.wikipedia.org/wiki/Hollywood_(graphics_chip)#Starlet
https://en.wikipedia.org/wiki/Jazelle
https://mastodon.social/@laplab/109697958878708357
https://find-and-update.company-information.service.gov.uk/company/SC313913

drwxr-xr-x 2 nodejs nogroup 4096 Oct 23 10:40 info

-rw-r--r-- 1 nodejs nogroup 16 Oct 14 12:13 jira_version

-rw-r--r-- 1 nodejs nogroup 2673 Oct 14 12:13 karma.conf.js

drwxr-xr-x 2 nodejs dialout 4096 Oct 23 10:49 logs

drwxr-xr-x 4 nodejs nogroup 4096 Oct 14 12:13 modules

drwxr-xr-x 17 nodejs nogroup 4096 Oct 14 12:13 node_modules

-rw-r--r-- 1 root root 0 Oct 23 10:40 nodejs.log

-rw-r--r-- 1 nodejs nogroup 76023 Oct 14 12:13 npm-shrinkwrap.jso

-rw-r--r-- 1 nodejs nogroup 2216 Oct 14 12:13 package.json

drwxr-xr-x 6 nodejs nogroup 4096 Oct 14 12:13 production

drwxr-xr-x 6 nodejs nogroup 4096 Oct 14 12:13 public

drwxr-xr-x 4 nodejs nogroup 4096 Oct 14 12:13 routes

drwxr-xr-x 3 nodejs nogroup 4096 Oct 14 12:13 scripts

drwxr-xr-x 4 nodejs nogroup 4096 Oct 14 12:13 views

From what I could figure out, the app consists of two parts. The first part

is responsible for actually reading usage data from the electricity meter

connected to the device. This part is called a “Pulse app” and its binary is

located in the bin folder:

root@nt-core:/srv/server# ls -la bin

drwxr-xr-x 10 nodejs nogroup 4096 Oct 14 12:13 .

drwxr-xr-x 13 nodejs nogroup 4096 Oct 23 10:47 ..

drwxrw---- 2 nodejs dialout 4096 Nov 16 00:12 aggregate

drwxrw---- 2 nodejs dialout 4096 Oct 23 11:03 cfg

-rwxr-xr-x 1 nodejs dialout 52418 Oct 14 12:13 ct-read-daemon

drwxrw---- 2 nodejs dialout 4096 Nov 16 01:00 daily

-rwxr-xr-x 1 nodejs nogroup 1155 Oct 14 12:13 get_sys_versions.s

drwxrw---- 2 nodejs dialout 118784 Nov 16 03:00 hourly

drwxrw---- 2 nodejs dialout 4096 Nov 1 01:00 monthly

drwxr-xr-x 2 nodejs nogroup 4096 Oct 14 12:13 output

-rwxr-xr-x 1 nodejs dialout 34543 Oct 14 12:13 pulse-app

-rwxr-xr-x 1 nodejs dialout 117029 Oct 14 12:13 pulse.ko

-rwxr-xr-x 1 nodejs nogroup 758 Oct 14 12:13 reset_nrg_mgr.sh

drwxrw---- 2 nodejs dialout 4096 Nov 16 01:00 weekly

drwxrw---- 2 nodejs dialout 4096 Oct 23 11:00 yearly

Judging from the debug symbols, my initial guess was that this is a regular C

appication, which seems appropriate for the task of interacting with low-

level GPIO pins. However, pulse.ko file got me interested. .ko extension

usually means “Kernel Object”, which would suggest that this is actually a

kernel module. I do not know a first thing about kernel modules, so I might

be wrong here.

Pulse app reads the data from the GPIO pins and stores the results in CSV

files. These CSV files are split by month, day and hour in the directories

with the respective names, still in the bin folder. Such separation is no

coincedence. Historical data view in the web UI of the energy manager

supports displaying the data only by month, by day and by hour.

Along with the Pulse app, there is the second part of the application. A

Node.js app reads CSV files populated with energy usage data and displays

them to the user in the web UI. It uses Node.js 0.10.26, Express.js 4.13.3

and Socket.io 1.3.6.

Scrolling through the dependencies, I noticed an mqtt package. This was

intriguing, because I did not see any message broker interaction until now.

After reading the sources for a little while, this seemed to be an unfinished

cloud integration that Netthings promised in their brochure. There are even

some hardcoded IPs mentioned in the source, which are used to connect to a

message broker. Unsurprisingly, none of them are up any more. I am not even

sure how that would work, since the device does not have an internet access.

All in all, this was a very fun investigation! I grew accustomed to calling

it “my urban archeology project”. I now have access to one of the weirdest

Edge Computing platforms imaginable. If you have any fun ideas on what to do

with it, feel free to drop me a line at hi@laplab.me!

P.S. As a final touch, I decided to leave a small note in the home directory.

It’s kind of weird to realise that I am probably the only person who would

actually read it. But maybe in some distant future another software engineer

will live in this apartment and discover it. Time will tell :)

mailto:hi@laplab.me

All rights reserved, Nikita Lapkov

