
pg_graphql: Postgres functions now
supported
2023-12-12 • 7 minute read

Supabase GraphQL (pg_graphql) 1.4+ supports the most requested feature: Postgres

functions a.k.a. User De�ned Functions (UDFs). This addition marks a signi�cant

improvement in GraphQL �exibility at Supabase, both as a novel approach to de�ning

entry points into the Graph and as an escape hatch for users to implement

custom/complex operations.

As with all entities in Supabase GraphQL, UDFs support is based on automatically

re�ecting parts of the SQL schema. The feature allow for the execution of custom

SQL logic within GraphQL queries to help support complex, user de�ned, server-side

operations with a simple GraphQL interface.

Minimal Example

Consider a function addNums for a basic arithmetic operation:

1 create function "addNums"(a int b int default 1)

We only collect analytics essential to ensuring smooth operation of our services.

Accept Opt out Learn more

https://supabase.com/privacy

when re�ected in the GraphQL schema, the function is exposed as:

To use this entry point, you could run:

which returns the JSON payload:

Supabase GraphQL does its best to re�ect a coherent GraphQL API from all the

information known to the SQL layer. For example, the argument a is non-null

because it doesn't have a default value while b can be omitted since it does have a

default. We also detected that this UDF can be displayed in the Query type rather

than the Mutation type because the function was declared as immutable , which

means it can not edit the database. Of the other , stab

le similarly translates into a Query �eld while volatile (the default) becomes a

Mutation �eld.

Returning Records

1 create function addNums (a int, b int default 1)

2 returns int

3 immutable

4 language sql

5 as $$

6 select a + b;

7 $$;

1 type Query {

2 addNums(a: Int!, b: Int): Int

3 }

1 query {

2 addNums(a: 2, b: 3)

3 }

1 {

2 "data": {

3 "addNums": 5

4 }

5 }

function volatility categories

We only collect analytics essential to ensuring smooth operation of our services.

Learn more

https://www.postgresql.org/docs/current/xfunc-volatility.html
https://supabase.com/privacy

In a more realistic example, we might want to return a set of an existing object type

like Account . For example, lets say we want to search for accounts based on their

email address domains matching a string:

Since our function is stable , it continues to be a �eld on the Query type. Notice

that since we're returning a collection of Account we automatically get support for

 on the response including first , last , before , after as

well as �ltering and sorting.

1 create table "Account"(

2 id serial primary key,

3 email varchar(255) not null

4);

5

6 insert into "Account"(email)

7 values

8 ('a@foo.com'),

9 ('b@bar.com'),

10 ('c@foo.com');

11

12 create function "accountsByEmailDomain"("domainToSearch" te

13 returns setof "Account"

14 stable

15 language sql

16 as $$

17 select

18 id, email

19 from

20 "Account"

21 where

22 email ilike ('%@' || "domainToSearch");

23 $$;

Relay style pagination

1 type Query {

2 accountsByEmailDomain(

3 domainToSearch: String!

4

5 """

6 Query the first `n` records in the collection

7 """

8 first: Int

9

10 """

11 Query the last `n` records in the collection

12 """

13 last: Int

14

15 """

16 Query values in the collection before the provided curs

We only collect analytics essential to ensuring smooth operation of our services.

Learn more

https://relay.dev/graphql/connections.htm
https://supabase.com/privacy

To complete the example, here's a call to our user de�ned function:

and the response:

y p

17 """

18 before: Cursor

19

20 """

21 Query values in the collection after the provided curso

22 """

23 after: Cursor

24

25 """

26 Filters to apply to the results set when querying from

27 """

28 filter: AccountFilter

29

30 """

31 Sort order to apply to the collection

32 """

33 orderBy: [AccountOrderBy!]

34): AccountConnection

35 }

1 query {

2 accountsByEmailDomain(domainToSearch: "foo.com", first: 2

3 edges {

4 node {

5 id

6 email

7 }

8 }

9 }

10 }

1 {

2 "data": {

3 "accountsByEmail": {

4 "edges": [

5 {

6 "node": {

7 "id": 1,

8 "email": "a@foo.com"

9 }

10 },

11 "node": {

12 "id": 3,

13 "email": "c@foo.com"

14 }

15]

We only collect analytics essential to ensuring smooth operation of our services.

Learn more

https://supabase.com/privacy

While not shown here, any relationships de�ned by foreign keys on the response type

Account are fully functional so our UDF result is completely connected to the

existing Graph.

It’s worth mentioning that we could have supported this query using the default acco

untCollection �eld that pg_graphql exposes on the Query type using an ilike

�lter so the example is only for illustrative purposes.

i.e.:

would give the same result as our UDF.

Limitations

The API surface area of SQL functions is surprisingly large. In an e�ort to bring this

feature out sooner, some lesser-used parts have not been implemented yet. Currently

functions using the following features are excluded from the GraphQL API:

16 }

17 }

18 }

1 query {

2 accountCollection(filter: { email: { ilike: "%foo.com" }

3 edges {

4 node {

5 id

6 email

7 }

8 }

9 }

10 }

Overloaded functions

Functions with a nameless argument

Functions returning void

Variadic functions

Functions that accept a table/views's tuple type as an argument

Functions that accept an array type

We only collect analytics essential to ensuring smooth operation of our services.

Learn more

https://supabase.com/privacy

We look forward to implementing support for many of these features in coming

releases.

Takeaways

If you're an existing Supabase user, but new to GraphQL, head over to

 for your project to interactively explore your projects

through the GraphQL API. User de�ned function support is new in pg_graphql 1.4+.

You can check your project's GraphQL version with:

To upgrade, check out .

For new Supabase users, will get you the latest version of

Supabase GraphQL with UDF support.

If you're not ready to start a new project but want to learn more about pg_graphq

l /Supabase GraphQL, our are a great place to learn about how your SQL

schema is transformed into a GraphQL API.

More Launch Week X

Share this article

GraphiQL built

right into Supabase Studio

1 select *

2 from pg_available_extensions

3 where name = 'pg_graphql';

our upgrade guide

creating a new project

API docs

Day 1 - Supabase Studio update: AI Assistant and User Impersonation

Postgres Language Server: implementing the Parser

How design works at Supabase

The Supabase Album

Launch Week X Hackathon

Launch Week X Community Meetups

We only collect analytics essential to ensuring smooth operation of our services.

Learn more

https://twitter.com/share?text=pg_graphql:%20Postgres%20functions%20now%20supported&url=https://supabase.com/blog/pg-graphql-postgres-functions
https://www.linkedin.com/shareArticle?url=https://supabase.com/blog/pg-graphql-postgres-functions&title=pg_graphql:%20Postgres%20functions%20now%20supported
https://news.ycombinator.com/submitlink?u=https://supabase.com/blog/pg-graphql-postgres-functions&t=pg_graphql:%20Postgres%20functions%20now%20supported
https://supabase.com/dashboard/project/_/api/graphiql
https://supabase.com/dashboard/project/_/api/graphiql
https://supabase.com/docs/guides/platform/migrating-and-upgrading-projects
http://database.new/
https://supabase.github.io/pg_graphql/api/
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/how-design-works-at-supabase
https://www.youtube.com/watch?v=r1POD-IdG-I
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog/community-meetups-lwx
https://supabase.com/privacy

Last post

Edge Functions: Node and native npm compatibility
12 December 2023

Next post

Supabase Studio: AI Assistant and User Impersonation
11 December 2023

Related articles

Edge Functions: Node and native npm compatibility
Supabase Studio: AI Assistant and User Impersonation
Postgres Language Server: implementing the Parser
How design works at Supabase
Supabase Launch Week X Hackathon

View all posts

Build in a weekend, scale to millions

Start your project

We only collect analytics essential to ensuring smooth operation of our services.

Learn more

https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/edge-functions-node-npm
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/studio-introducing-assistant
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/postgres-language-server-implementing-parser
https://supabase.com/blog/how-design-works-at-supabase
https://supabase.com/blog/how-design-works-at-supabase
https://supabase.com/blog/how-design-works-at-supabase
https://supabase.com/blog/how-design-works-at-supabase
https://supabase.com/blog/how-design-works-at-supabase
https://supabase.com/blog/how-design-works-at-supabase
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog/supabase-hackathon-lwx
https://supabase.com/blog
https://supabase.com/dashboard
https://supabase.com/dashboard
https://supabase.com/dashboard
https://supabase.com/privacy

