
You don't need JavaScript for
that
by Kilian Valkhof (https://kilianvalkhof.com) published on Dec 02,

2023

Please don't feel antagonised by the title of this article. I don't

hate JavaScript, I love it. I write bucketloads of it every single day.

But I also love CSS, and I even love JSX HTML. The reason I

love all three of these technologies is something called:

The rule of least power

It's one of the core principles of web development and it means

that you should Choose the least powerful language suitable

for a given purpose.

On the web this means preferring HTML over CSS, and then CSS

over JS. JS is the most versatile language out of the three

because you're the one describing how the browser should act,

but it can also break, it can fail to load and it takes extra

resources to download, parse and run. It is also very easy to

https://www.htmhell.dev/
https://kilianvalkhof.com/
https://kilianvalkhof.com/

exclude keyboard users and people using assistive technologies

with it.

In contrast to JS, which is imperative, HTML and CSS are

declarative. You tell the browser what to do, now how to do it.

That means the browser gets to choose how to do it, and it can do

it in the most efficient way possible.

Because HTML and CSS features are handled by the browser

they can be more performant, more native, more adaptable to

user preferences and in general, more accessible. That doesn't

mean it will always be (especially when it comes to accessibility)

but when the browser does the heavy lifting for you, your end

users will generally have a better experience.

But I need JS for that!

You might be thinking “All the things I use JS for, I need JS for”.

That might be true, but it's good to know that both browser

makers and specification writers have been porting a lot of

functionality over to CSS and HTML that up to a few years ago

needed JS. And that's what this article is about.

The tricky thing with the web is that once you learn how to build

something there is never a reason to have to learn it again. That's

the contract we have: the web is backwards compatible. (Very few

exceptions apply, but the first web page still runs fine in all

modern browsers.)

That also means that the solution you learned once becomes part

of your toolbox, and you can keep re-implementing it and

everytime it will still work. So the examples I'm going to give

below are cool (that's why I'm listing them) but what I want you to

take away from this article is that just because you know

something needs JavaScript, doesn't mean it still does. You can

make better websites if you test those assumptions every now

and then.

Custom Switches

We'll start this article off with something we've all had to

implement at some point, custom switches. Instead of using a

regular checkbox, the design calls for a nice looking switch.

Instead of reaching for a JS solution with divs, onclick handlers

and internal state, we're going to make use of a regular checkbox

and the :checked pseudo class. Here's ther HTML we're going to

use:

There's a label element, and inside it a checkbox. The nice thing

about this is that the browser is already doing things for us.

Because the input is inside the label, the browser has associated

them and now we can click anywhere on the label to toggle the

checkbox, no onclick handler in sight. The browser gives us this

for free. Feature-wise, we're done.

<label>

 <input type="checkbox" />

 My awesome feature

</label>

 My awesome feature

A checkbox

Of course, designers may not like the way this looks and we want

to create a great looking custom switch. So let's add a bunch of

CSS:

All the specifics of the styling here don't matter as much, but I

want you to take a look at that first rule: appearance: none .

input {

 appearance: none;

 position: relative;

 display: inline-block;

 background: lightgrey;

 height: 1.65rem;

 width: 2.75rem;

 vertical-align: middle;

 border-radius: 2rem;

 box-shadow: 0px 1px 3px #0003 inset;

 transition: 0.25s linear background;

}

input::before {

 content: "";

 display: block;

 width: 1.25rem;

 height: 1.25rem;

 background: #fff;

 border-radius: 1.2rem;

 position: absolute;

 top: 0.2rem;

 left: 0.2rem;

 box-shadow: 0px 1px 3px #0003;

 transition: 0.25s linear transform;

 transform: translateX(0rem);

}

Form elements, along with images, are something called

"replaced content". That means they're not really part of your

HTML, but supplied by the browser. When the browser renders

your HTML and finds replaced content, it leaves a box for it, and

then replaces that box with the actual content. This is why, for

example, images and form elements can't have pseudo-elements:

they get replaced when the browser replaces the entire element.

appearance is a way of telling the browser to stop doing that. It

tells the browser: "Thanks, but I want to style my own form

control". And that then allows is to use the ::before pseudo-

element. The input itself is now the background of our switch, and

the ::before pseudo-element is the little dot inside of it that does

the toggling.

Clicking this still checks and unchecks the checkbox, but because

we replaced the element we need to do the work of making that

visible ourselves. That's where the :checked pseudo-class comes

in:

 My awesome feature

Styled custom switch

:checked {

 background: green;

}

:checked::before {

 transform: translateX(1rem);

}

When you click the checkbox, that :checked pseudo-class starts

to match and that causes the styling to update.

So we have a great looking custom switch using native HTML

elements and a bit of CSS, but we're not done yet. While for

mouse users it's really clear which form control they're interacting

with (since they're pointing at it and clicking), for people using a

keyboard that's not so easy.

I'm sure you're familiar with this bit of CSS. To get rid of that ugly,

dotted, boxy outline.

If you're reading this, know that's not a good idea. But how do we

make it look, well, nicer? Here too browsers have updated to

make things better for us. The outline now follows the border-

radius of an element, and we can also offset it away, or inside of,

the element:

 My awesome feature

Styled custom switch

input:focus {

 outline: none;

}

input:focus-visible {

 outline: 2px solid dodgerblue;

 outline-offset: 2px;

}

Now, when a user interacts with an element using the keyboard

(you cna try pressing the spacebar after clicking it, or tabbing to

it), :focus-visible will match (it won't when using a mouse) and

they get a good looking, blue outline slightly around the element.

Lastly, I want you to replace that outline: none with something

else:

This will have the same result: Instead of the outline not being

visible because it's hidden, it's not visible because it's transparent.

For users that have high contrast mode (also called forced colors)

turned on however, that outline becomes visible again because in

high contrast mode, that transparent color gets replaced with a

color the user chose, helping them see what they're interacting

with even if they use a mouse.

This article isn't long enough to also go into what forced-colors

does but if you want to learn more check out my article forced

colors explained (https://polypane.app/forced-colors/).

Datalist, a native autosuggest

Instead of installing $your-framework-autosuggest , try out datalist

in your next project. Datalist is the browsers built-in way of

 My awesome feature

final custom checkbox

input:focus {

 outline-color: transparent;

}

https://polypane.app/forced-colors/
https://polypane.app/forced-colors/
https://polypane.app/forced-colors/

showing a list of options as a user types into an input.

To use it, you add a datalist element with an ID and a set of

options to your HTML. Don't worry, the element won't be visible.

Then you use the list attribute on an input to associate the two.

As a user now types into the input, the browser will show the

datalist as a dropdown, automatically filtering the options as the

user types. Because it's a regular input though, users still have

the option to type in their own value. Lastly, they can see all of the

options by selecting the input and using the arrow keys to

navigate the list, or clicking the dropdown icon the browser adds.

A color picker that does more

There are a ton of good looking color pickers out there, with nice

canvas UIs and sliders that are built with 100s of lines of

JavaScript. But did you know that you can also use a native color

picker?

<input list="frameworks" />

<datalist id="frameworks">

 <option>Bootstrap</option>

 <option>Tailwind CSS</option>

 <option>Foundation</option>

 <option>Bulma</option>

 <option>Skeleton</option>

</datalist>

Datalist example

This single line of HTML also give you a color picker with a nice

UI, already saving you a bunch of JS. But because we're letting

the browser handle it, we actually get more functionality for free.

In Chromium browsers, that native color picker also lets you pick

a color, not just from your own site but from anywhere on the

screen. Pretty neat!

A quick note here is that even though browsers show a nice color

picker, your users might not all be able to use it. So offering a

different way of picking a color (like a regular text input) is still a

good idea.

Accordions

Accordions are a great way of making a page with a lot of content

more structured and uncluttered by keeping content out of the

way until a user needs it. And browsers give them to you for free

with the details and summary elements:

<label> <input type="color" /> Color </label>

Color

Native color picker

<details>

 <summary>My accordion</summary>

 <p>My accordion content</p>

</details>

By default everything inside a details element is hidden except

for the summary . Then when a user clicks the summary element the

browser will show the rest of the content.

What you'll often see is that one of the accordion items is already

open, and the rest are closed. You can do that with the open

attribute:

If you come from the React world, you might look at this code and

think “Well that's great, now it has the open prop and isn't going to

close anymore“ but luckily, that's not the case. That open attribute

is only the starting state, and will update when a user interacts

with the accordion.

When it comes to styling, the details element also has you

covered. That little triangle (that your designer will want to replace

the instant they see it) is a ::marker pseudo-element that you can

style:

My accordion

Accordion

<details open>

 <summary>My accordion</summary>

 <p>My accordion content</p>

</details>

My accordion

My accordion content

Accordion that starts open

Keep in mind that changing the content can affect how assistive

technologies announce your accordion. Read Manuels article on

that here: details/summary inconsistencies

(https://www.matuzo.at/blog/2023/details-summary).

The marker pseudo-element can't be styled as extensively as

other elements (many CSS properties do not work on it, like

positioning it in a completely different place), but you can replace

its content, for example with emoji, or set a background color or

image and change it's font size.

With the open attribute you can easily give it different styling from

the closed state.

Lastly, we want to do something about that summary element. It's

clickable, but unlike a link it doesn't get a pointer cursor, and

unlike a button it, well, doesn't look like a button. So I think we

should add a hover and focus state to it and help our visitors

realise that it's clickable:

summary::marker {

 font-size: 1.5em;

 content: "📬";

}

[open] summary::marker {

 font-size: 1.5em;

 content: "📭";

}

📬My accordion

Accordion with styled markers

https://www.matuzo.at/blog/2023/details-summary
https://www.matuzo.at/blog/2023/details-summary

I'm sidestepping the “only links should have pointer cursors”

discussion here, the main point I'm making is that you need to do

something.

Dialog modals

Sometimes you need to inform the user about something, or ask

them something or get them to confirm something. In JavaScript,

that's what alert() , prompt() and confirm() do. But they have a

pretty big downside: they lock the main thread, meaning your

page can't do anything else. They're also browser-native, so you

can't style them to work with your design.

Building your own dialog is also asking for trouble: you need to

keep the focus inside the dialog for accessibility, announce it's

modal-ness, make sure users can't exit it accidentally, and you'll

have to fight with whatever chat widget occupied the z-index of

2147483647 (if you know you know).

So that's why browsers now come with a native dialog element:

summary:hover,

summary:focus {

 cursor: pointer;

 background: deeppink;

}

My accordion

Accordion with indication on hover

This element isn't shown by default and, for now, this is where I'm

going to cheat a little and use JavaScript:

Now there's changes in the works that will let you open dialogs

without JavaScript, but they're not fully specced yet, let alone

implemented. So for now, we need to use JavaScript to open the

dialog. But that's it, the rest is all native HTML and CSS.

The dialog element has a showModal() function that it exposes

and with it, you open the dialog. This dialog is opened on

something called the top-layer , which is a new concept in

browsers. For a primer, check out the explainer on MDN: Top

layer (https://developer.mozilla.org/en-

US/docs/Glossary/Top_layer).

<dialog>

 <form method="dialog">

 <h3>This is a pretty dialog</h3>

 <button type="submit">Close</button>

 </form>

</dialog>

document.querySelector("button").addEventListener("click",

 document.querySelector("dialog").showModal();

});

Open dialog

A native dialog

https://developer.mozilla.org/en-US/docs/Glossary/Top_layer
https://developer.mozilla.org/en-US/docs/Glossary/Top_layer
https://developer.mozilla.org/en-US/docs/Glossary/Top_layer
https://developer.mozilla.org/en-US/docs/Glossary/Top_layer

The top layer is a new layer that's separate from your HTML, and

you can "promote" elements to it. That means that elements on

the top layer will always be above everything else, regardless of

the z-index of an element and stacking context nesting.

Now that it's open though, you might notice that the browser

doesn't give you any UI. The dialog is pretty much a div (not a

button!) and it's up to you to provide the UI for closing. That's

what the form in the code above does. You might've noticed it has

a method of "dialog". When this form gets submitted, the browser

takes that as a signal to close the dialog again.

With that, you can also create confirmation dialogs by providing

two buttons, each with each own values:

The button that a user clicked can be found by listening to the

close event on the dialog and reading it's 'returnValue' property:

<dialog>

 <form method="dialog">

 <p>Tabs or spaces?</p>

 <button type="submit" value="wrong">Tabs</button>

 <button type="submit" value="correct">Spaces</button>

 </form>

</dialog>

dialog.addEventListener("close", function () {

 console.log(dialog.returnValue);

});

If you have any other form data in there you can also read that as

formData (https://developer.mozilla.org/en-

US/docs/Web/API/FormData).

Because the dialog is essentially a div as far as styling it

concerned, you can style it however you want. The browser will

automatically place it in the middle of the screen for you, but

everything else is up to you.

Dialog also comes with a new pseudo-element called ::backdrop .

That's the layer that sits between the dialog and the rest of the

page, and you can style it to e.g. dim the rest of the page or

otherwise direct a users attention to the dialog. For example, you

can overlay a white layer and blur the page:

Just like the dialog element itself, the backdrop is positioned by

the browser, so you won't need to worry about scrolling, fixed

Open dialog

Dialog with multiple buttons

dialog::backdrop {

 background: #fff5;

 backdrop-filter: blur(4px);

}

Open dialog

Dialog with styled backdrop

https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData

elements and browser resizing. It's all handled for you by the

browser.

In closing

I hope you found a few things in this article that made you realise

you can use a little bit less javascript in your next project.

Whenever you change a known battle-tested implementation to

something new it's good to test it, especially when it comes to

accessibility, to make sure that you're not excluding anyone.

There are dozens more examples I could've added into this

article, here are just some you can look into:

Native smooth scrolling with scroll-behavior: smooth (but

only when prefers-reduced-motion: no preference

matches!),

Native carousels with scroll-snap,

"In-view" elements with position: sticky

…Not to name the whole concept of container queries.

And if we look into the future, we're getting even more cool things:

Scroll driven animations

Masonry layouts without masonry.js but with

grid-template-rows: masonry

A fully stylable select with the new selectlist element

(where you can style each part of a select without destroying

all the native functionality it comes with)

The :has() selector that's going to eliminate a whole class of

JS selection

built with eleventy (https://www.11ty.dev/) and ❤ in Vienna by @mmatuzo

(https://www.matuzo.at)

About Contribution Github (https://github.com/matuzo/HTMHell) Feed

This article is an adaption of a conference talk I gave that goes

into more detail on these and other topics, and you can watch it

here: Stop Using JavaScript for That: Moving Features from JS to

CSS and HTML. (https://www.youtube.com/watch?

v=ZTMUJu26b7Q)

So let me re-iterate the main point of this article:

Just because you know something needs JavaScript, doesn't

mean it still does. You can make better websites if you test those

assumptions every now and then.

About Kilian Valkhof

Web developer and creator of Polypane.app, the browser for

developers.

Blog: kilianvalkhof.com (https://kilianvalkhof.com)

Mastodon: @kilian (https://mastodon.social/@kilian)

X: @kilianvalkhof (https://twitter.com/kilianvalkhof)

Polypane: Polypane.app (https://polypane.app)

More articles

https://www.11ty.dev/
https://www.11ty.dev/
https://www.matuzo.at/
https://www.matuzo.at/
https://www.htmhell.dev/about/
https://www.htmhell.dev/contribution/
https://github.com/matuzo/HTMHell
https://github.com/matuzo/HTMHell
https://www.htmhell.dev/feed.xml
https://www.youtube.com/watch?v=ZTMUJu26b7Q
https://www.youtube.com/watch?v=ZTMUJu26b7Q
https://www.youtube.com/watch?v=ZTMUJu26b7Q
https://www.youtube.com/watch?v=ZTMUJu26b7Q
https://kilianvalkhof.com/
https://kilianvalkhof.com/
https://mastodon.social/@kilian
https://mastodon.social/@kilian
https://twitter.com/kilianvalkhof
https://twitter.com/kilianvalkhof
https://polypane.app/
https://polypane.app/

