
Path-Sensitive

Home Archive About Coaching Learn Software Design

technical life-optimization

Jimmy Koppel

Hello world! I'm Jimmy, and I help software

engineers learn to write better code. Previously,

I did my Ph. D. at MIT on ways to make

program transformation and synthesis tools

easier to build, a.k.a. "meta-

metaprogramming." I blog mainly about

improving code quality, and occasionally about

life quality.

Personal website

About me

Labels

book-review researchy startups

talks fun personal tools

Should you split that file?
/ DECEMBER 01, 2023

You’re a line programmer for EvilCorp, and it’s just an average day

working on some code to collapse the economy.

Then you realize you need some code for disrupting supply chains.

Should you split it into a new file?

Let’s say you do.

Pretty soon your directory looks like this:

https://www.pathsensitive.com/
https://www.pathsensitive.com/
https://www.pathsensitive.com/p/archive.html
https://mirdin.com/about-us/
https://mirdin.com/coaching-application/
https://mirdin.com/
https://www.pathsensitive.com/search/label/technical
https://www.pathsensitive.com/search/label/life-optimization
http://www.mirdin.com/
http://www.jameskoppel.com/
https://twitter.com/jimmykoppel
https://twitter.com/jimmykoppel
https://www.pathsensitive.com/search/label/book-review
https://www.pathsensitive.com/search/label/researchy
https://www.pathsensitive.com/search/label/startups
https://www.pathsensitive.com/search/label/talks
https://www.pathsensitive.com/search/label/fun
https://www.pathsensitive.com/search/label/personal
https://www.pathsensitive.com/search/label/tools
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://self-service.mirdin.com/software-design-quiz
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjXa7Ojd48gOzOpJQvf_p15kEzCY2xQsnxjPg4HQjMh7X6MOjlbqK7Jlgdts-_gwY1xJeZPzP-9HWLcTTIWkTk4WADlioeq5x24b8Zm1mUxXv8yqLJYqMJnMMuJJ9RHHub8ZZ6KNfPR03NT2LbXQch-OAuh0YUxZ7T6edCWp4vKHpHwf__qe_P7R8caaAK1/s1600/image18.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjWVacH65c0Thp5oldvLQti_IK42V68luMD91R4OomETGFkV2lV5m3zzWxCjWchPXvuNPR1KVu8EiRvBmVUNISog-kAjVs913RKhAS0zkWigC5uZ1KczgkcG1KxuA_sXVBzcHVuEOEkr-YKAq5LXjECqQ54D4nLH_L5dY_MdQSvi2JbPRZJZCD9aitBwSGZ/s1600/image25.png

It’s so well organized! You want to know what it tracks about the robot

armies, it’s right there.

Except that all your files look like this:

And the control flow through the files looks like this:

Now you’re starting to regret having broken it up so aggressively.

Now back up a bit.

Let’s say you keep it in one file, at least for now.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhuoilHbSVAfD9OnAnUitArES3xlSrLtSMysH7ew4K46Xb8NyQbyuif8_cpLf7VpnC_ciKRnkYauvjAabQYMYX1yRcTTjwsPySol-IgQeWFbgiZN1WRMWj_YByxPHBMdHkMuqCNFyGOERTgm9I8kBa4zvGDIJMS7NmmCOMJWlVBOOBs6Sl7iSzV45sL9pZ5/s1600/image13.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgimsLUKWy9aVZxDGBhAlftXSA18uxaLvzlTxo2eE_XWSLdtxfgB3autK8vvzzb_Wq3lQVVBSg_1oh7l2fkEzEPaCsrxRZpDs33DMxJgt0fU0ZaOoQ4GoqtxoYRdwEfROnx_i9-Cw15Cn64HiHnfHv_svYkE-X5uBZSVoc_qOXLvyYES1sDfRSu_omDtQoe/s1600/image20.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgRjxEuFGF9LxHNu3DW446kOceC0BGsujcPGC3J_hR3KIZ3Sy1DyIgijJ-0k0STiUJdjY_Ah4XKS3o6o4oCQsZvXM3iMlFgiEra_MqACv1JP9w87_eJp4GcMdUSAeejM3oY31CiKWLp3ozm6jZJACgwb0cnBuy0zrRBT6IKELYzOQk91tArgeASPwV4XHTF/s1600/image14.png

Then you need to add some code for supply chain and robot info.

This repeats a few times. If you’re lucky, the file looks like this, where

lines of the same color represent related code:

There, we can see related code is mostly together, but there’s some

degradation, and a few things don’t fit neatly into any category. Needs

some weeding, but overall a decently-kept garden.

If you’re less lucky, it looks more like this:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjRM2kkYz5nFhQEMwh2QmrM3z57rYFiwlvBpjUNj_nGWJgDbzf5DOX4zmZRCzuB9H3Ysx2JnvKqKTiDkeIfF9TUci7wt-Z1DbWaNq3sarHfJB8xD2Udu7T3dqMhYkjkQW1Ni_op9ZvF8XVQcwbZcCIRVGoFpB0vlWa6kkvYZThuRhbwRktr23BKN-npHTBZ/s1600/image5.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipjAVSCRX4SfwaoqJwQQPjdptrdq5pssjhBa_J3eESI8bKHK2FgriAriZ02cv5rlEMDnOO60DLMvyA_iEcThyLoqxOXl6pT9aF3HGtgEvizmBLd6WNGTiP2DUQ2mR8Kh9AB7i0Io0WwLmflkqsi6M8m5nrY8TZJKKnPXf3HMUVAY0D84hSD9rqR9WhOnF2/s1600/code1.png

This is a file where there clearly used to be some structure, but now

it’s overgrown with chaos.

Of course, if you don’t have the whole file committed in memory, it

looks more like this:

Man, just figuring how it directs the army is a headache. That really

should be broken out into its own file. But don’t you wish you had

done so earlier?

In nearly all ecosystems, programs consist of files consisting of text.

When you break code into more files for more categories, it becomes

easier to find and understand code for each category, but harder to

read anything involving multiple categories. When you keep code

together into fewer files, it becomes easier to track the control flow

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjrl6qfs8Lk8AGM5hn2RRsZ0C0kvG6HqLpJNZLl2t5bq9R7ZZNjvkljSKNYisgPZebrQ96BofJuk_Keh8loDo-rLBGUeIwZDCKOyLejD-CbeJg_lgRZF0MM-4hE-7MaSouyjqN4KH-seDJoG8HlS84VTuJ7FW490a3-XywfxfFwUVuuz8L5OyS9emzIxSmH/s1600/Screenshot%202023-12-01%20at%206.07.38%E2%80%AFPM.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgvNuc4xksGNcahw3-W-aj3h0Jm3cwNstFeqjAKlSaSmNOGRyurfeNKYNNUjnxkjOWXS5MwtTh-XFvU4vu3ITexNFvOF-TxY2rDLA8YHD8PBz1E2O4SGSJTqYWxeDF1Q2_E0aFGNHur2FZXF854Zxcu1vNmBoQGPsX3nS__iyxMvvxzffpcv6Vvl7fSuILJ/s1600/image23.png

for individual operations, but harder to form a mental map of the

code.

What if I told you that you can eat the cake and have it too?

Here’s how.

The magic third way

Let’s look at your colleague Tom in the service division of the robotics

department. He works on the repair manual that keeps the whole

company’s army running smoothly. One day he’s working on the

section for how to maintain the mirrors in the laser cannons.

He realizes that he actually wants to add quite a few things about

polishing the mirror. You see, the mirrors can only be polished with a

custom nanoparticle solution, and so part of maintaining the mirror is

really about maintaining the polish. Where to put this information?

Unlike in code, it’s a pretty big deal to “split stuff out into a new file,”

since they like to keep everything in one volume for the technicians.

Putting it in a new chapter would mean an awful lot of page flipping.

And it’s quite messy to just mix in a lot of sections about maintaining

the polish into the larger chapter on the laser cannon.

But he has no problem adding them with more organization:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiN-zY_G1T3tL6zs_X6ZQ3afm_lT-VdVyr_E7wZodYLEuq5g1KU4PxlZ4w3dfoE2mR3oW6H8L7poFipFJq5YAsVGYorwB4eRGTMu7ghZNhmZKUS_QCNV8Cwsij1E6E6n9BFF11djVHyvEpHLWcGcvJrXeoUJ6ll57MN_t8ei8-pG5gXg9ROBWm9Xj4JSnXS/s1600/image21.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhB55cZu6Nsgi6DOnbTQ5tqc61nW95GtSVUlHx4unaXUeU2HFscfMaoJ4MQzXxbi7sEpFWmNyJX8OTh1K9g7H2at6Lj_5mYSW9854G9-8ZhBVhiw97BUySm4P749rnch0GvzxlqZz9aJcOnh9NYK9kd3PgIIrLAIvyHh3lPqzyivbtZDjziY1sPqKT4PiRp/s1600/image22.png

That’s the normal way to organize books, with chapters and

subchapters (and sub-subchapters). Or, in HTML: h1, h2, etc.

We have them in code too.

They look like this:

/***

 **************** h1 in C/C++/Java/JS **************

/**************

 ********* This is an h2

 **************/

/********

 **** An h3

 ********/

Or this:

################ Python/Ruby/Bash H1 ###############

############## An H2

An H3

Or this:

--

-- Haskell/Lua h1

--

----------- An h2 -------

------ An h3

Or any of countless other variations. They all get the job done. I tend

to like the ones that more visibly break up the text, so: like the first

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi5exd9eRciVZFdxfh14IXNOp5j1QS0j68ZSxVHQVw5GOY6Zo2fP30GOPQSuR3jaTAmM9aR7XQ02nKvAc7Mv3jxtPRkYkcGMbPqCUQFmbv4ObVmNpYElIQ7wSZNRAItGiyNMKpaaclwP_rkdA4AN3vLLB9CDAGjlsHuGcj_WnbcwsHTC2khaW4XynKbxT6c/s1600/image17.png

bunch, except translated into whatever language I’m using.

I teach people a lot of things about software design. Some of them are

things I dusted off from papers written in the 70’s. Many more I can

claim to have invented myself.

This one, not in the slightest. In fact, here’s some CSS guys doing it, in

the frontend framework “Semantic UI”:

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

/*******************************

 Types

*******************************/

/*-------------------

 Animated

--------------------*/

.ui.animated.button {

 position: relative;

 overflow: hidden;

 padding-right: 0em !important;

 vertical-align: @animatedVerticalAlign;

 z-index: @animatedZIndex;

}

And here’s some smart-contract developers:

But I can say that I’ve never seen anyone else write about it explicitly,

nor take them as far as I do.

“Jimmy,” one listener commented. “At my workplace, I’ve seen a lot of

code with these sections, but stuff keeps getting added in the middle,

and then the sections become meaningless.”

“Is it too hard to just add a subsection for exactly the stuff added?”

“Actually” he replied, “I don’t think I’ve ever seen subsections.”

But my code these days has it everywhere. On occasion to three or

more levels of organization.

https://github.com/Semantic-Org/Semantic-UI/blob/master/src/definitions/elements/button.less#L217
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhOpI1sx7P8mLUNUut27mXdSIP2lOmeCt9GzpflNFBBsb46-Mr8vyXs8z8hK2TmjYyEe9_LBimvoh2Qg40gOnC01mCDuUMcBc7ZFHMFkVT5u64z2AXY368zvibyibxVKRmRNnNbPOar9UF0Ch_RukAVxiciXIrGKRPLXEoEzJNQKJGF-lc7mhgU1bFkBwLh/s1600/image7.png

(What in the world is this code doing, just renaming strings? Another

deep idea and another discussion. Short version: Trying to get the

benefits of having a fancy datatype for identifiers without actually

doing any work.)

Aggressively splitting files into sections and (sub-)subsections is the

biggest way my code has changed in the last 5 years. It requires little

skill, and, once you build the habit, little effort. But I’ve found it makes

a huge difference in how pleasant it is to live in a codebase.

Cognitive load and design reconstruction

Hopefully I don’t have to argue too hard that code organized into

sections and subsections is nicer to read, if not to write. Here are two

versions of a code snippet (source) from Semantic UI: the original, and

one with the section dividers removed. Personally, even at a glance, I

find the version with them present more inviting.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhdLRb7Rj7ahg6iCrHr83Scj49Bz49V8ckFOYNNn7d0MjakRu1uWW3kpJeU0uPFzGXY9JmjFJXjvwkzBVaAX5IPiASlobr9irKZ9kQAg-z3N7WCTPLD6JzsLlA3V-6edxDVSei9HSqIpU2dnGEEZ1cnT17rWAqyMkiYD4LBWqh4wnAMtNgb3xqhQvx6OzWq/s1600/image19.png
https://github.com/Semantic-Org/Semantic-UI/blob/49b9cbf47c172c65dc265d213c609ad5e651a6a9/src/definitions/elements/button.less

There are actually some pretty deep reasons why sub-file

organization works.

We saw that splitting a file comes with advantages and disadvantages.

As does not splitting.

But, actually, for not splitting, all the disadvantages were in reading it.

When you start a new feature, you have some high-level intentions.

By some process, you turn the high-level intentions into low-level

intentions into code.

But when someone first looks at a file, it’s just a blob.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGNnDG1W_od-V3j1IxIt6-Gxy29ElmNt8KD8nfMhsDJU8Z9H11IIl4Lk-OWRgK7xfq41b7gJQJZFn7f6Z3nEAnP95IQLRdticWDaj3MK_Mvps5oKJZ0I-G9nfvuBYYtRo4X04GfNp7JeuyWPLLpIV0RqXq1jmHUYVxF_buqIX3Y0L4d-wWfxHoW15lvTyE/s1600/Untitled%20design%20%2810%29.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhtrFf6A-D30JQSt_vJHEV4KqKIFfTwiqllHNtTg_69f7TXmb6zR0hcBtrjjEe59liOctfhAJ6E5R3vCpUTasKDaYTLpKQj07tCUch0KooGhIvcqZcR-0uCA56kiVZhVMkqlWUfzu4mHbu8Wr2oAT-zEgfU_AvJ1pPhh0ohcJ3eQzY6bt1REjSpUCmFipG8/s1600/image16.png

Then they start to read and build an understanding of each piece.

As they understand more pieces, they can begin to understand how

they fit together into a bigger picture.

But all this is wasted work! The reader is just trying to reconstruct

knowledge that was already known to the writer!

That’s a very general problem. Anything done to counter it falls under

the umbrella of what I call the Embedded Design Principle. Splitting a

file into sections is just one particularly effective instance of this

broader idea. As poetically explained in The 11 Aspects of Good Code:

Good code makes it easy to recover the intent of the programmer

A programmer dreams a new entity. Her mind gradually turns dream into

mechanism, mechanism into code, and the dreamed entity is given life.

A new programmer walks in and sees only code. But in his mind, as he reads

and understands, the patterns emerge. In his mind, code shapes itself into

mechanism, and mechanism shapes itself into dream. Only then can he work.

For in truth, a modification to the code is a modification to the dream.

Much of a programmer's work is in recovering information that was already

present in the mind of the creator. It is thus the creator's job to make this as

simple as possible.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhFXlaYpHIX04o5QzUKmZz6db7-Z0lQ6WHbLZcqfe5j8KLlgTHfuQ50r-mC_mcPTm4zkkEmAPexZ2EA5GqVXIpoFjZJ89hgd6pAq7JaSi_6qqdmAL6Vcl_Y004KW4dDetB6U1mGEPhbA5irZyH94pTAIC2ytFnUbyBCSqSRPscQW0hpu3WWEfn2_7Mm47pP/s1600/image3.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEju6LN4HemKmp3vC8uazjtSpayEAwPNg3hrIxl0jJh8pMps0G0aeBXfhQo4AFVduPRr7sIyNhtkxTlFVScVnd3Ydw4bmhtV6rU1mEuPYFoffp4zCWCUgxQXAhveekviT-2GogJIhilevtWAdUxZYSjOnWroYeKyCTEBSkZ98nhCCgj2dxseivA7B0shHsIN/s1600/image24.png
https://www.pathsensitive.com/2018/02/making-bugs-impossible-illustrating.html
https://www.pathsensitive.com/2023/07/the-11-aspects-of-good-code.html

Back to the robot armies. The reader has started to piece together a

bigger picture.

In this example, the code was written in three sections and then not

edited. That brings an offer: understand the first three functions, and

you understand the big ideas of the mechanics behind sending forth a

robot army. Understand the next three, and you understand the

bigger picture. But the reader in the picture hasn’t found that

structure yet.

Piecing this code together is like a jigsaw puzzle. And in a jigsaw

puzzle, if I were to give you a box with only pieces from the left half,

and a box with only the pieces from the right half, it would be more

than twice as easy.1 That’s a lot like what you’re doing for the reader

by labeling code sections.2

There’s one more benefit too. I and many others I showed this to

report a sense of relaxation and calm from skimming through a well-

sectioned file, a lot like coming home to a clean room. I think what’s

going on here is cognitive ease: there’s a psychological phenomenon

in which easy things literally cause happiness. There’s an entire

chapter on it in Kahnemann’s Thinking Fast and Slow.

Oh, and then there’s also how naming is one of the two hard problems

of computer science (the others being cache invalidation and off-by-

one errors). If you put two functions that coordinate robotics

surrounding and invading a factory into a file, then you’re going to

want to think of some general name that captures both these and

everything similar that should go in the same file. That sounds kinda

tough; my best is “offensive_tactics.ts.” But you just cordon these off

into a little section of a larger file containing the whole supply-chain

disruption logic, then naming that section is a much lower bar. After

you find yourself writing additional related functions, then you can

break it off into a new file as easily as you can change a subchapter in

a book into a full chapter.

So there's a lot of costs and benefits to breaking up a file vs. keeping it

together, and we've seen that having sections and subsections does a

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhxzB6Cu48luFHzxitR4g3myUU1WD27UkkZIMfY02XGlLLcebWxhKN2XkZTXhpg_t4p52Z1DK6lzPNc3RG27CpogPh340AT5zEtDOZXmYewn2TnpFTE1ca98MGlhMiRy5iSlfLAhSBGK1l36Ar70RrFhvOe0ChA3A-qJlY4iSe18CGZVV5PN__D616hR4oT/s1600/image6.png

TAGS:

lot to lower the cost of keeping it together. But actually, it's pretty rare

that I've seen people go too aggressive in breaking up files. More

often I see people who think breaking up a file would make it more

organized, but there's just too much inertia. And the bigger a file

grows, the harder it becomes to break out meaningful components.

That's why having a handful of giant files used to be the hallmark of a

bad codebase, one completely disorganized. But this is the real

greatness of sections: it's a way to get much of the benefits of splitting

up files, but it feels more like jotting down a thought you had than

actually doing work. And if you keep things organized in sections,

then it's not any harder to break apart a file later than it is now.

So now we know that, just by recording a little bit more of your

thinking when writing code, it’s possible to have files which are both

large and well-organized. And doing so lets you read code faster,

follow control-flow better, delay having to find good names, and

literally injects happiness into your life. Let’s make our files large

again!

Of course, this is still not the easiest thing you can do to lower the

cost of large files.

That would be buying a bigger monitor.

Thank you to Jonathan Camenisch, James He, and Supachai “Champ” Suwanthip for discussion on the ideas behind this blog post.

Thank you to Benoît Fleury, Torbjörn Gannholm, Oliver Chambers, and William Berglund for comments on earlier drafts.

1

 I had to check this one and, it turns out, average solving time for jigsaws is remarkably linear in the number of pieces. But, if you

like jigsaws and know some computer science, we can reason about the complexity of each step of solving: first find the corners

and edges (linear), then group pieces by region (linear-ish), then solve the parts of the puzzle where each piece looks distinct

(linear to quadratic), then solve the parts of the puzzle where the pieces all look similar (near quadratic). Through this lens, a large

jigsaw is actually composed of many subregions, each of which could take near-quadratic solving time. In the worst case, the

jigsaw is just a solid color, and you’re stuck comparing each edge pairwise, which is clearly quadratic unless you’re really good at

indexing on the shapes of the holes and protrusions. This invites the more accurate statement: for each of the quadratic-time

subregions of a jigsaw puzzle, if I were to split the pieces into a left and right half, the solving speed for that subregion would

roughly improve by 4x. This is both more accurate and a better metaphor for the effect of adding subdivisions to a source file.

2

 The ideal would be to do the code equivalent of handing someone a painting instead of cutting it up into jigsaw pieces in the

first place. The programming equivalent would be to actually make your designs into the program. Choices for approaching that

include writing with declarative libraries, using symbolic program synthesis techniques, or using ChatGPT and letting natural

language be the code.

Liked this post?

http://www.facebook.com/sharer.php?u=https://www.pathsensitive.com/2023/12/should-you-split-that-file.html&title=Should%20you%20split%20that%20file?
http://twitter.com/share?url=https://www.pathsensitive.com/2023/12/should-you-split-that-file.html&title=Should%20you%20split%20that%20file?
https://plus.google.com/u/0/share?url=https://www.pathsensitive.com/2023/12/should-you-split-that-file.html
https://journeyofsomething.com/blogs/news/how-long-does-it-take-to-finish-jigsaw-puzzles-of-different-sizes

Copyright © 2015-18 James Koppel. All rights reserved. Top

Reply

OLD ER P OST →

2 comments:

Replies

Enter Comment

ANONYMOUS

Traditionally, source �le sections were separated with ASCII FORM FEED characters. It’s

whitespace so (most) compilers ignore it.

Nicer text editors have convenient ways to operate on only the current “page”, or navigate

between pages, or narrow the view to only one page at a time. You can have it display the �rst

comment on a page as a title. It’s a pretty great system and I don’t know why it’s so rarely

used.

Reply

JAMES KOPPEL

Wow, that's cool! Got any references?

Join Arch-Engineer, the newsletter on how to write better code,

and receive a free copy of the 7 Mistakes That Cause Fragile

Code.

First name Last name Email-address SUBSCRIBESUBSCRIBE

Related Articles

javascript:;
https://www.pathsensitive.com/2023/09/its-time-for-painkillers-vitamins-die.html
javascript:;
javascript:;
https://www.blogger.com/profile/00605996177342825315

