
Learnings from fine-tuning LLM on

my Telegram messages

27 Nov 2023

Approach

Data preparation

Evaluation plan

LoRA

Full fine-tuning

Closing thoughts

Code

For most people I interact with, I’m just another text-based

program for the most of the time. If input and output are so

simple, could I be replaced by the model? For this to work, the

model would need to not only understand my writing style but also

know a lot about me. The best source for this is my Telegram

messenger, as I use it daily and it contains almost everything

about my thoughts and actions in the form of chat histories.

Approach

The most straightforward approach would be to extract all my

messages, load them into ChatGPT’s context, and instruct it to use

this information to mimic my style when responding to new messages.

However, this approach is limited by the context window size,

requiring me to preprocess messages to extract key points. As I

want to avoid this hassle, perhaps Retrieval Augmented Generation

(RAG) could be used to pull necessary information when needed.

However from my experience, retrieving from diverse data like chat

sessions usually needs a supervised fine-tuning of the retrieval

model, and I’m not keen on creating such a dataset. So, fine-tuning

seems like the best option. It’s ideal for several reasons: it

should capture my writing style and potentially accumulate

knowledge from all my messages without having to select what’s

important.

OpenAI offers fine-tuning capabilities, but as I’ll be using my

private messages, I don’t want to use any third-party fine-tuning

services. So, I need to choose a base model. According to the

Hugging Face Open LLM Leaderboard, one of the top smaller models

(≤13B parameters) is Mistral 7B. It even outperforms Llama 2 13B.

Now, the question is whether LoRA is sufficient or if full fine-

tuning is necessary. Various comparisons [1] [2] suggests that LoRA

is a bit worse than full fine-tuning but still fine most of the

time. However, for specific tasks like mine (Russian language +

chat), I found a paper, where researchers conducted Llama

instruction fine-tuning in Chinese, similar in complexity to my

https://platform.openai.com/docs/guides/fine-tuning
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2304.08109

goal. They found that LoRA-based tuning on a base model without

prior instruction tuning is less effective than full fine-tuning.

Yet, LoRA-based tuning on a model already fine-tuned for

instructions can yield comparable results. In my case, this means

either full fine-tuning on a base model or LoRA on a model already

fine-tuned for chatting in Russian. Since I couldn’t find a model

fine-tuned for Russian chat, I’ll try LoRA on a model fine-tuned

for English chat, like the fine-tuned Mistral model Dolphin.

So, the plan is:

1. Start with LoRA on top of Dolphin, the English chat fine-tuned

Mistral

2. If quality is not sufficient, try full fine-tuning on Mistral

Data preparation

One unique aspect of messaging in apps like Telegram, compared to

emails, is the conversational flow. Messages don’t usually

alternate one-by-one between you and your contact. Instead, you

often find yourself sending a couple of messages in a row, followed

by several responses from the other person. These messages are

generally short, too. I wanted to preserve this natural

conversational style in my data.

Telegram offers a built-in feature to export all chats into JSON.

After some filtering and grouping messages into sessions, I’ve

compiled data from the last five years of using Telegram. This

resulted in 15,789 sessions from 466 chats, with an average session

length of 8.51 messages. For structuring the data, I’ve chosen the

ChatML prompt format. Here’s a sample session (translated from

Russian):

<|im_start|>John Smith

>>> damn, can’t get around the 135 time limit

>>> trying to do everything super optimally, but no luck<|im_end|>

<|im_start|>Alexander Smirnov

>>> yeah same

>>> you still going with the same idea?<|im_end|>

<|im_start|>John Smith

>>> dunno, I think we’re on the same page

>>> as you said

>>> going with the reversed string in a try and trying to find

something there

>>> seems like real shit because z function ruins

everything……………………<|im_end|>

<|im_start|>Alexander Smirnov

>>> don’t get where z comes into this<|im_end|>

<|im_start|>John Smith

>>> dunno seems like I’m doing everything iteratively anyway, but

yeah gotta reverse some strings to build the z function

>>> and it’s just a random solution

>>> from discussions<|im_end|>

<|im_start|>Alexander Smirnov

>>> got it<|im_end|>

https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b
https://telegram.org/blog/export-and-more
https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/chatml.md

original

My data collator ensures that the loss is only calculated based on

someone’s response. Predicting who will speak next is relatively

straightforward, and we don’t want the model to focus on learning

that. Therefore, parts of the conversation where the loss is

calculated are highlighted in bold.

You might notice that not only my responses but also those of

others are used for loss calculation. This is deliberate. By doing

this, the model will be able to role-play not only as me but also

as my frequent conversational partners!

Evaluation plan

I will test models by having chats in two ways. First, the model

will pretend to be me and I will be chatting with myself from the

perspective of my different friends. Then, I’ll chat as myself

while the model acts as my friends. My conversation starter will

always be the same 2 messages: “hey” and “what’s up?” (in Russian,

“прив” and “как дела?”). Generated phrases and persons as the model

acts who from will be highlighted. All conversations initially will

be held in Russian and may be accessed by clicking on the

‘original’ details button. For testing I will be using

oobabooga/text-generation-webui.

In the beginning, I want to explore how the generic conversation

fine-tuned Mistral model deals with that task without any prior

training from my side.

Friend 1 vs Alexander Smirnov

original

Alexander Smirnov vs Friend 1

original

Ok, it is capable of forming coherent sentences. The most

noticeable problem is its lack of awareness regarding the context

of the conversations which leads to bland and generic replies. The

messages lacked any distinct style, feeling quite basic. Another

issue is that the model’s Russian is poor. This is expected, as the

model is too small to generalize well to languages other than its

primary one, English. Additionally, the model tended to be overly

proactive, ending almost every sentence with a question, which

isn’t how real people typically communicate in messengers.

Let’s try to fix all of these!

LoRA

https://github.com/oobabooga/text-generation-webui

LoRA offers a low-effort approach in terms of both the training

pipeline and hardware requirements. It trains around 1% of the

total weights. I chose a 1024 sequence length and a batch size of

8. The training, which consumed 20GB of VRAM on an RTX 3090, took

three epochs and lasted for 5.5 hours. For this, I used vast.ai,

where the GPU cost was $0.362 per hour, totaling $2 for the entire

training, excluding time spent on experiments and bug fixes.

Here are the results:

Friend 1 vs Alexander Smirnov

original

Friend 2 vs Alexander Smirnov

original

Friend 3 vs Alexander Smirnov

original

Alexander Smirnov vs Friend 1

original

Alexander Smirnov vs Friend 2

original

Alexander Smirnov vs Friend 3

original

This is much better. It definitely captures the style of the person

it’s responding on behalf of. It also identifies the most common

topics discussed between specific pairs of people. For example,

with friend 2, the focus is clearly more on work. However, the

grammar is still off, and it loses the context of the conversation

quickly. I’m pretty confident that LoRA would work with reasonable

quality in English, and full fine-tuning might not be necessary.

But, since Russian isn’t the model’s native language, let’s try

full fine-tuning.

Full fine-tuning

Full fine-tuning is more challenging due to the need for multi-GPU

training. Popular methods include either ZeRO & DeepSpeed [3] or

https://vast.ai/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

FSDP [4], with FSDP essentially being a ZeRO3 [5]. I decided to go

with FSDP.

While implementing the training pipeline, I referred to the

Stanford Alpaca fine-tuning code and Anton Bacaj’s Mistral fine-

tuning code.

Using a half-precision FSDP full shard with a 1024 sequence length

and a micro batch size of 2 required 63GB of VRAM on each of the

eight A100 80 GB GPUs. The training, lasting three epochs, took

just 20 minutes. The total cost for the VM was $8.88 per hour,

resulting in $3, not including the time for experiments and bug

fixes.

Conversations:

Friend 1 vs Alexander Smirnov

original

Friend 2 vs Alexander Smirnov

original

Friend 3 vs Alexander Smirnov

original

Alexander Smirnov vs Friend 1

original

Alexander Smirnov vs Friend 2

original

Alexander Smirnov vs Friend 3

original

Conversations have become more interesting and engaging, although

there’s still a risk of losing context. Russian language

performance has improved, but errors still occur. I believe that

before fine-tuning for a specific task with limited data, like

mine, it would be beneficial to first fine-tune the model

unsupervised on a large corpus of Russian texts. Additionally,

incorporating common conversation partners’ names as separate

tokens might enhance the quality.

https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://github.com/tatsu-lab/stanford_alpaca/
https://github.com/abacaj/fine-tune-mistral/
https://github.com/abacaj/fine-tune-mistral/

I wouldn’t say it has turned out to be significantly better than

LoRA. It might be more effective to focus solely on a single person

and calculate the loss based only on my responses (or someone

else’s), instead of trying to learn about each and every

conversational partner.

Closing thoughts

Certainly, I had to cherry-pick the results, not because most of

the model’s replies were inadequate, but because many were simple

responses like “I’ll call you later,” “busy,” and “ok,” which are

naturally frequent in conversations. Despite this, it’s clear that

the model excels in mimicking the style of the person it’s

impersonating. It also captures the commonly discussed topics

between two people. However, it significantly lacks context in

conversations. Responding to queries like “yo, so?” or “what are

your plans for the weekend” is challenging without having full

context. Perhaps utilizing a system like Rewind, which captures

everything the user does across the computer, could be beneficial.

Code

You can find code for this project as well as instructions on how

to replicate it yourself on your own Telegram dump in my github

repo. Training logs may be accessed on WandB.

1. Fine-Tuning LLMs: LoRA or Full-Parameter? An in-depth Analysis

with Llama 2 (anyscale.com/blog) | ↩︎

2. LoRA results in 4-6% lower performance compared to full fine-

tuning (github.com/huggingface) | ↩︎

3. How to Choose Which ZeRO Stage and Offloads To Use For Best

Performance (huggingface.co/docs) | ↩︎

4. Introducing PyTorch Fully Sharded Data Parallel (FSDP) API

(pytorch.org/blog) | ↩︎

5. It’s 2023. Is PyTorch’s FSDP the best choice for training large

models? (openmmlab.medium.com) | ↩︎

home

https://www.rewind.ai/
https://github.com/furiousteabag/doppelganger
https://github.com/furiousteabag/doppelganger
https://wandb.ai/furiousteabag/doppelganger
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://github.com/huggingface/peft/issues/622
https://github.com/huggingface/peft/issues/622
https://huggingface.co/docs/transformers/main_classes/deepspeed#how-to-choose-which-zero-stage-and-offloads-to-use-for-best-performance
https://huggingface.co/docs/transformers/main_classes/deepspeed#how-to-choose-which-zero-stage-and-offloads-to-use-for-best-performance
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://openmmlab.medium.com/its-2023-is-pytorch-s-fsdp-the-best-choice-for-training-large-models-fe8d2848832f
https://openmmlab.medium.com/its-2023-is-pytorch-s-fsdp-the-best-choice-for-training-large-models-fe8d2848832f
https://asmirnov.xyz/

