
One of the fundamental challenges in software

engineering is managing and minimizing complexity. This

challenge is not just a theoretical concern; it has real and

tangible impacts on the pace of development. Overly

complex codebases slow teams down, making even

simple changes cumbersome and time-consuming. This

phenomenon is known as “change amplification:” the

more complex a codebase becomes, the more

modifications across different files and functions are

required to implement a simple change.

John Ousterhout explains change amplification in

"Philosophy of Software Design" as “a symptom of

complexity which is that a seemingly simple change

requires code modifications in many different places”. This

problem was especially rampant in early web

development, where a single design element change (i.e.

Written by

Greg Foster

In this post

Change amplification: a symptom of complexity

Measuring the impact of PR scope

A closer look at review efficiency for varied PR

sizes

Best practices for minimizing complexity

Conclusion

Stay unblocked.

Ship faster.

Experience the new developer

workflow - create, review, and

merge code continuously. Get

sta�ted with one command.

Change amplification: a symptom of

complexity

#learning

How large pull

requests slow down

development
November 21, 2023

Share this a�ticle:

Log in Sign up

https://www.notion.so/Stacking-dev-Rework-ecf6a1e47ab74349a7bd8319f6d97ec0?pvs=21
https://www.goodreads.com/en/book/show/39996759
https://twitter.com/intent/tweet?url=https%3A%2F%2Fgraphite.dev%2Fblog%2Fhow-large-prs-slow-down-development&via=withgraphite&text=How%20large%20pull%20requests%20slow%20down%20development%3A
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fgraphite.dev%2Fblog%2Fhow-large-prs-slow-down-development
https://app.graphite.dev/
https://app.graphite.dev/api/v1/graphite/oauth/github/start?nextPath=%2F&permissions=SIGN-IN
https://graphite.dev/


a banner color) required updates on every page. Modern

web development practices have evolved to centralize

such elements, significantly reducing the need for

widespread code changes to implement a visual update.

The goal is clear: good software design should limit the

amount of code affected by each design decision. In a

well-architected software system, changes with high

amplification - those that impact many areas - signal a

problematic level of coupling.

Here at Graphite we wanted to better understand and

quantify the costs of change amplification at scale, so we

looked to our dataset of millions of PRs created by top

engineering teams for answers.

In order to investigate how change amplification affects

engineering efficiency, we looked at 1.5 million pull

requests and compared the number of files that were

changed (as a proxy for complexity) to the time these PRs

took to merge.

Our data brings a few interesting patterns to light:

Get sta�ted

Measuring theimpact of PR scope

https://app.graphite.dev/api/v1/graphite/oauth/github/start?nextPath=%2F&permissions=SIGN-IN


Unsurprisingly, the fastest PRs are those that change

the fewest number of files. This suggests that high-

velocity engineering organizations should architect

their systems to minimize file touch points in each PR.

Notably, even a slight increase in the number of files

changed can more than double the time-to-merge.

This isn't merely a matter of file quantity; it indicates

higher risks, coupled code, and a greater likelihood of

failing continuous integration (CI) processes.

Review complexity also increases with the number of

files, requiring more time and cognitive effo�t from

reviewers. Moreover, with Git operating at a per-file

level, more files mean a higher chance of rebase

conflicts, which can fu�ther slow down development.

The graph depicting the average time to review per file

against the number of files in a PR reveals a

counterintuitive trend: as PRs grow beyond a moderate

level of complexity, the time spent reviewing each file

notably decreases. Initially, one might expect review time

to increase monotonically with PR complexity, yet the data

A closer look at review efficiency for varied

PR sizes



indicates a pivot point where reviewers spend less time

per file as file count grows.

This could be explained by reviewers shifting their

strategy from a meticulous line-by-line assessment to a

broader, risk-oriented evaluation of larger PRs. Large PRs

may also include more auto-generated and/or repetitive

changes, which are quicker to verify once the reviewer

identifies the recurring pattern. Additionally, cognitive

limits mean that reviewers may simply lose focus across a

large number of files, inadve�tently speeding up the

review process.

The overall takeaway from the data is that small PRs lead

to faster merges, and large PRs containing more files get

less concentrated focus from reviewers. This is critical for

engineering teams to understand - if you want to create

high-quality code while maintaining an efficient review

process, you have to keep PRs sufficiently small.

The implication of the data is clear: if you want to create

high-quality code while maintaining an efficient review

process, you should aim to limit PRs to three or fewer

files changed. Beyond this threshold, there's a significant

Best practices for minimizing complexity



Related posts

increase in time to merge. If maintaining small PRs is

challenging, consider the following strategies:

1. Try out “stacking”: stacking is a source control

workflow that allows for smaller, more manageable

PRs. By parallelizing review and development,

stacking keeps you unblocked while waiting on code

review and lets you push changes up for review as

you write them. Tools like Graphite make stacking

easy for teams that host their code on GitHub.

2. Simplify software design: As Ousterhout notes,

complexity often stems from an accumulation of

dependencies and obscurities. By simplifying design,

you reduce change amplification, cognitive load, and

the potential for 'unknown unknowns'. This makes it

easier and safer to modify existing code bases.

Change amplification is not just a theoretical problem - it

clearly manifests in the time it takes to merge large &

complex PRs. By keeping changes small and manageable,

we can simultaneously increase development velocity

while reducing the risk of regressions - and modern

source control tooling such as Graphite can help you and

your team achieve this.

Conclusion

#learning

Understanding Git: The history and

internals

November 9, 2023

#learning

How long should yo

November 2, 2023

https://stacking.dev/
https://graphite.dev/blog/understanding-git
https://graphite.dev/blog/how-long-should-ci-take


Kenneth DuMez Greg Foster

© 2023

Product

Features

Pricing

Docs

Customers

Company

Blog

Careers

Contact us

Resources

Community

Privacy & security

Terms of service

Stacking workflow

Developers

Status

GitHub

https://graphite.dev/blog/understanding-git
https://graphite.dev/blog/how-long-should-ci-take
https://graphite.dev/join-slack
https://twitter.com/withgraphite/
https://github.com/withgraphite/
https://graphite.dev/
https://graphite.dev/pricing
https://graphite.dev/docs
https://graphite.dev/customers
https://graphite.dev/blog
https://graphite.dev/careers
https://graphite.dev/contact-us
https://graphite.dev/join-slack
https://graphite.dev/privacy
https://graphite.dev/terms-of-service
https://graphite.dev/stacking
https://status.graphite.dev/
https://github.com/withgraphite/

