
One superfamily.
Five fonts.
Three variable axes.

Since the earliest days of the teletype machine, code has been set in monospaced type — letters, on a grid. Monaspace

is a new type system that advances the state of the art for the display of code on screen.

Every advancement in the technology of computing has been accompanied by advancements to the display and

editing of code. CRTs made screen editors possible. The advent of graphical user interfaces gave rise to integrated

development environments.

Even today, we still have limited options when we want to layer additional meaning on top of code. Syntax highlighting

was invented in 1982 to help children to code in BASIC. But beyond colors, most editors must communicate with

developers through their interfaces — hovers, underlines, and other graphical decorations.

Monaspace offers a more expressive palette for code and the tools we use to work with it.

An innovative superfamily of fonts for code

monaspacemonaspacemonaspacemonaspacemonaspacemonaspace

Download Learn more

https://github.com/githubnext/monaspace#monaspace
https://githubnext.com/
https://githubnext.com/

JavaScript HTML CSS Java Python C++ PHP

Font size 16

Weight 300

Width 100

Slant 0

Theme

Texture healing

Ligatures

Grid

GitHub Dark

Neo-grotesque

sans

Ne

Neon

Humanist sans

Ar

Argon

Slab serif

Xe

Xenon

Handwriting

Rn

Radon

Mechanical sans

Kr

Krypton

What if?

Monospaced fonts are generally incompatible with one another.

Each one uses different metrics, making it impossible to mix

different fonts. Each Monaspace font is designed to be

seamlessly mixed and matched. Layer more meaning onto

code, with a palette that goes beyond colors and bolder

weights. Build interfaces for code that require more structure

and hierarchy.

What if Copilot had its own voice? Ghost text makes it harder to parse and evaluate code

suggestions. What if the typography made it clear?

What if Copilot spoke in its own typographical voice, and you

could see which parts of your code it suggested after the

fact?

// Before

const [isClicked

// After

const [isClicked

m
mmmme

e
eeerr

r
rrggg

g
geeee

em
mmmme

e
eeerr

r
rrggg

g
geeee

e

// What if tentative ideas looked handwritten?

/**

* What if docstrings looked authoritative?

*/

class Terminal_Dimensions {

constructor() {

this.width = process.stdout.columns;

this.height = process.stdout.rows;

}

}

// What if tentative ideas looked handwritten?

/**

* What if docstrings looked authoritative?

*/

class Terminal_Dimensions {

constructor() {

this.width = process.stdout.columns;

this.height = process.stdout.rows;

}

}

Texture healing

Monospaced type suffers from an inherent problem of uneven texture — text with some areas that are significantly

denser, and some that have an excess of whitespace. It’s an unavoidable consequence of trying to fit every letter into a

uniform box, when some letters want more space, and some want less.

These shortcomings have been the same since the heyday of the Teletype machine in the 1960s. Texture Healing is a

novel technique that evens out the density of monospaced type, bringing it closer to how proportional type has looked

for centuries.

Texture healing preserves the monospace grid, and works in most editors without needing new software or

editor plugins. How does it work?

In proportional typefaces, every

glyph is designed with a unique

width. The design of an m can be

wider than the design of an i . Every

glyph gets the space it needs, and

no letter is stuck with too much or

too little.

The design of each letter

incorporates some amount of

whitespace on both sides of a glyph.

These sidebearings create the

visual room that help us

distinguish one letterform from

the next.

Too little, and the letters will run

together. Too much, and the

letters will look disconnected.

But in monospaced faces, every

letter must be the same width,

regardless of what that letter needs.

Adjusting the sidebearings isn’t

enough. The letter must be

altered to either fill up the box, or

squeeze into it — and still leave a

little bit of room for sidebearings.

Narrow letters like l and i must

be designed with exaggerated

serifs to better fill the monospace

box. Even with these synthetic

additions, these narrow letters

have more space than they need.

Wide letters like m and w are

crammed into their boxes, and their

shapes are visibly distorted

compared to the rest of the

alphabet. Their strokes are thinner,

and the negative space inside the

glyph is also compromised. There’s

Texture healing works by finding each pair of adjacent characters where one wants more space, and one has too

much. Narrow characters are swapped for ones that cede some of their whitespace, and wider characters are

swapped for ones that extend to the very edge of their box. This swapping is powered by an OpenType feature called

“contextual alternates,” which is widely supported by both operating systems and browser engines.

Contextual alternates are normally used for certain scripts, like Arabic, where the shape of each glyph depends on the

surrounding glyphs. And they are also used for cursive handwriting fonts where the stroke of the “pen” might have

different connection points across letters. Texture healing is a novel application of this technology to code. See our

instructions for enabling texture healing in Visual Studio Code.

little room for these glyphs to grow

bolder without turning into an

unreadable blob.

Even though these letters have

less space than they want, they

still need to leave some room

for sidebearings so they don’t

crowd the adjacent letters.

TEXTURE HEALING OFF

TIME_limit

TEXTURE HEALING ON

TIME_limit

https://github.com/githubnext/monaspace/#visual-studio-code
https://github.com/githubnext/monaspace/#visual-studio-code

Step by step

Let’s unpack how texture healing is applied.

In the word “calming” there are two pairs that can be texture healed.●

● The l has space to give, and the m would benefit from more space.

● In the first pass, the generic l is replaced with one that

is narrower and shifted to the left, away from the m .

● The generic m can then be replaced by a version

that extends to the left edge of the space.

Monaspace contains alternates for glyphs

that can shrink or grow in either direction.

● But texture healing can also work in more than one direction.

The next pair of characters is also eligible for texture healing.

● As before, the letter with space to give is replaced

with one that cedes some whitespace to its neighbor.

This time, it shifts to the right.

● And now the m is replaced once more, with

a variant that extends in both directions.

640k styles ought to be enough
for anyone

While the variable fonts support any combination you can

choose, every Monaspace font also defines common named

weights and styles for applications that do not yet support

variable fonts. The three axes are weight, width, and slant.

The weight axis ranges from 200 to 800

200: Extra Light

300: Light

400: Regular

500: Medium

600: Semibold

700: Bold

800: ExtraBold

The slant axis ranges from 0 to -11°

The more negative the value, the more the letters are slanted. At the midpoint of the range some letters change their

shapes to become true italics.

0: Normal

-5.5°: Swap obliques for italic letterforms

-11°: Italic

The width axis ranges from 100 to 125.

100: Normal

112.5: Semiwide

125: Wide

● Texture healing finds the most visually compromised

pairs and heals them with more legible replacements.

The resulting text still obeys the monospaced grid.

MONASPACE NEON MONASPACE ARGON MONASPACE XENON

Code ligatures

Monaspace includes code ligatures for a broad variety of languages, organized into stylistic sets that you can enable or

disable according to your preferences.

Each stylistic set is roughly designed around the needs of specific languages. For example, ss01 includes ligatures

for character sequences commonly seen in JavaScript, and ss05 provides ligatures for operators in F#.

You can enable as many or as few of them as you like.

In addition to the eight stylistic sets, there are two additional utility sets:

calt (contextual alternates) activates ligatures that adjust the visual positioning of some character sequences

without altering their shape or appearance. Activating this feature will also enable texture healing.

dlig (discretionary ligatures) activates a basic set of ligatures that are shared by many programming languages and

frameworks — mostly sequences of repeating characters.

Visual Studio Code

Choose the stylistic sets you want to enable, and copy the following line into your settings.json:

"editor.fontLigatures": "'ss01', 'ss02', 'ss03', 'ss04', 'ss05', 'ss06', 'ss07', 'ss08', 'calt', 'dlig'",

verbatim

nimblest

foothill

metaphor

effusive

plummier

horology

sanguine

platypus

cosmical

zoetrope

mirthful

latticed

yodeling

halflife

luminary

ornithic

newfound

sundries

ambulate

clavicor

Italic

ss01

== ==

=== ===

=/= =/=

!= !=

!== !==

/= /=

/== /==

~~ ~~

=~ =~

!~ !~

ss02

>= >=

<= <=

ss03

-> ->

<- <-

=> =>

<!-- <!--

--> -->

<~ <~

<~~ <~~

~> ~>

~~> ~~>

<~> <~>

ss04

</ </

/> />

</> </>

/\ /\

\/ \/

ss05

|> |>

<| <|

ss06

##

###

ss07

*** ***

/* /*

*/ */

/*/ /*/

(* (*

*) *)

(*) (*)

ss08

.= .=

.- .-

..< ..<

dlig

<! <!

~~ ~~

** **

:: ::

=: =:

== ==

=! =!

=/ =/

!= !=

-- --

<~ <~

calt

// //

/// ///

&& &&

!! !!

?? ??

?. ?.

?: ?:

|| ||

:: ::

::: :::

;; ;;

Contributors

Monaspace was made with the goal of improving all code, for all developers.

GitHub Next set out on this journey in 2022, and we were fortunate to find a type foundry that shares our passion for

improving software in Lettermatic. The result is a marriage of form and function that opens the door to new developer

10

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

2

..............

..............

10

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

5

............

............

............

............

............

2

..............

..............

2

............

............

7

............

............

............

............

............

............

............

3

.............

.............

.............

65

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

24

............

............

............

............

............

............

............

............

............

............

https://githubnext.com/
https://lettermatic.com/

experiences, and that would not have been possible without the domain expertise and skill of the Lettermatic team,

and the time they invested to work with GitHub Next on figuring out how typography ought to work for code.

For a full list of contributors, documentation, and the fonts themselves, visit the Monaspace repo.

℣

© 2023 GitHub. All rights reserved.

What will you make with
Monaspace?

Download

https://github.com/githubnext/monaspace
https://lettermatic.com/
https://github.com/
https://github.com/
https://github.com/githubnext/monaspace/releases/latest
https://github.com/githubnext/monaspace#monaspace

