
by Chris Krycho

Addressing a very common question: do-it-as-you-go or follow the
dependency graph?

Assumed audience
(https://v�.chriskrycho.com/����/assumed-audiences.html): Software

developers working with JavaScript and TypeScript, or thinking about and
working with gradual type systems in other languages. In particularly: I am
not arguing for TypeScript or Python types or Ruby’s Sorbet etc.; I am
talking to people who are already interested in adopting them.

Epistemic status
(https://v�.chriskrycho.com/journal/epistemic-status/): I led the

conversion of a ���,���-line-of-code app to strictly-typed TypeScript back
in ����–����, and was the primary “subject matter expert” for LinkedIn’s
adoption of TypeScript across its millions of lines of library and application

JavaScript.

One of the most common questions I get from people interested in
converting their JavaScript applications to TypeScript is: How should
I approach this? There are two approaches people tend to think of:

A relatively relaxed approach: setting compilerOptions.strict:
false initially, converting files as you touch them, and gradually
increasing the robustness of the types by enabling individual
strictness flags until you have them all turned on — or some
combination of these.

A more rigorous approach: setting compilerOptions.strict: true,
and very carefully converting the codebase in a “leaves-first”
order, where no module is converted without first having types for
all of its dependencies. Making explicit what “more rigorous”
probably already implies: this is my preferred approach.

Most developers (myself included, the first time I did this!) are very
much tempted to do the “just convert a file when you touch it, in

Sym·poly·mathesySym·poly·mathesy

How to Do a TypeScript Conversion

https://v5.chriskrycho.com/about
https://v4.chriskrycho.com/2018/assumed-audiences.html
https://v4.chriskrycho.com/2018/assumed-audiences.html
https://v4.chriskrycho.com/2018/assumed-audiences.html
https://v4.chriskrycho.com/2018/assumed-audiences.html
https://v5.chriskrycho.com/journal/epistemic-status/
https://v5.chriskrycho.com/journal/epistemic-status/
https://v5.chriskrycho.com/journal/epistemic-status/
https://v5.chriskrycho.com/journal/epistemic-status/
https://v5.chriskrycho.com/

loose mode or with lots of // @ts-expect-error and any scattered
around” thing. It seems like the lowest-friction, fastest, easiest path:

That pattern usually works with other kinds of migrations.

It feels more tractable, in that you can just do it “as you go”.

It actually works pretty well for sufficiently-small codebases — it’s
very good for <,LOC and pretty good for <,LOC.�

Accordingly, it is also the approach I see most often recommended to
people starting out on converting a TypeScript codebase.

Unfortunately…

It’s a trap!

You will encounter two big problems when you take the more
relaxed, intuitive, much-recommended approach. On smaller
codebases, these problems may not matter all that much, but the
bigger your codebase is, the more they will hurt.

First, you will end up having to propagate changes to various files
over and over and over again:

Each time you enable another strictness setting, you will see new
type errors in many modules. The biggest of these will be

strictNullChecks and noImplicitAny, but all of the strictness
settings will catch things missed without them: that is why the
settings exist, after all. These are not usually spurious errors,
either.� Thus, you will have to do another pass “fixing the types”
for the module each time you enable a new strictness setting.
If you convert a module but have not converted the modules it
depends on, all the types from those dependency modules will be
any. When you convert those files, you very often find mistakes in
the way you were using their APIs. Just like with strictness
settings, this means you often end up having to “fix the types” for
other modules each time you make this kind of change.

— / N O T E / —

I scare-quoted “�x the types” here because it is usually “write the types and
�x the bugs”. As I have written before
(https://v�.chriskrycho.com/journal/is-typescript-good/):

…in many cases the complexity was already present in the code base.
�e TypeScript conversion did not create that complexity: It exposed
it. Real-world JavaScript code is often incredibly complicated —

indeed, clever — in ways that only become obvious when we try to
express in types the contracts the code already invisibly assumes. As a
result, conversions from JavaScript require complex types far more than
code written in TypeScript from the start. Much of the complexity is
(permanently!) implicit in JavaScript, while writing out the contracts
in TypeScript makes it explicit. �at enables better choices: does this

particular API actually warrant some complicated types, or should we
just keep it simple? Usually: the latter.

Even so, it can feel like we are just �xing TypeScript issues over and over

again, and I think it is important to acknowledge that.

This kind of thing can be quite demoralizing at a personal level, as
you work to “fix types”, because you find yourself hitting the same
pieces of code over and over again. It can also be difficult to
communicate clearly to less technical team members, e.g. designers
and product owners who can be quite reasonably confused about
why we need to spend time on doing TypeScript things for this chunk

https://v5.chriskrycho.com/journal/is-typescript-good/
https://v5.chriskrycho.com/journal/is-typescript-good/
https://v5.chriskrycho.com/journal/is-typescript-good/
https://v5.chriskrycho.com/journal/is-typescript-good/

of the codebase again — “Didn’t we do that a month ago?” Having
to explain that “Yes, we did, but not all the way” can be frustrating.

Second, and maybe even worse, you cannot rely on the things you
have already converted actually being safe when taking this
approach. They feel safer than JS types-wise because they are in
TS… but they are not, because they have lots of // @ts-expect-error
and any scattered around. It can end up being quite demoralizing and
frustrating to have errors coming out of your “but we already
converted this!” modules. It also undermines a lot of the promises we
make when justifying the investment to our management or
partners: “I thought the point of TypeScript was to fix these kinds of
bugs, so why isn’t it doing that?” As with having to do multiple
passes on the same files, having to answer “Well, we converted this
to TypeScript, but not all the way…” is deeply unsatisfying.

Finally, the problems described here scale exponentially in difficulty
with the size of the codebase. With , lines of code, these
problems are minor annoyances. With , lines of code, they are
a bit of a hassle. With , lines of code, they are actively
demoralizing. With ,, lines of code… you might just never
finish. The friction never goes away, so it requires constant effort to
keep it moving and get it across the finish line.

The more rigorous approach of setting compilerOptions.strict: true
and walking the dependency graph in order means you never have to
revisit the file because of increased strictness or newly-well-typed
dependencies. What is more, there is a really big upside to the
experience when you do a conversion this way. When all your
dependencies are already strictly typed, every time you convert a
new module it sits on a solid foundation. TypeScript itself can do a
fair bit of the work of adding types for you via its code fixes, since it
can use the information from the downstream s you call. For the
parts you have to figure out on your own, you still have to check all
the ways the module’s s are used, but you don’t have to check all
the things it uses: the problem space is cut in half.

The net is a double win: every module you convert actuall delivers on
type safety, and every module you touch gets easier because its
foundation is safe. The process is like a flywheel: every bit of effort
you apply speeds up the rest of the process.

This is not a free lunch. It generally requires more discipline and
more explicit buy-in from stakeholders. Instead of “just convert a file
when you touch it (and usually leave it not-fully-converted)” you
need to carve out some dedicated time to do the work by tackling a
couple modules each week or something like that.� Ultimately,
though, it makes for a much better experience for everyone involved.

1. I suspect this is one of the big reasons this approach is so commonly
recommended! Many people with a relatively high pro�le in the TypeScript
community have more experience with TypeScript conversions and
maintenance of libraries, which are often in this ~10,000 lines-of-code range,
where this can work reasonably well. ↩

2. It is true that there are sometimes type errors where the runtime code is safe.
�is is less and less common over time with TypeScript, though, and in my
experience the vast majority of the type errors surfaced by enabling new
strictness �ags indicate real bugs in the code. ↩

3. You can still incrementalize this approach. If you have a larger app/etc. broken
into a set of smaller packages, you can do the “iteratively work within a small
library” approach within the packages, while avoiding publishing the types

until you get them to full strictness. �at ends up having some of the
advantages and disadvantages of both approaches. ↩

P OSTED : �is entry was published in Journal on November �, ����.

Spotted a typo? Submit a correction!

RESP ON D : �oughts, comments, or questions? Shoot me an email (it’s way
better than traditional comments), or leave a comment on Hacker
News or lobste.rs.

NOTES

https://v5.chriskrycho.com/journal/
https://github.com/chriskrycho/v5.chriskrycho.com/edit/main/site%2Fjournal%2F2023%2FHow%20to%20Do%20a%20TypeScript%20Conversion.md
mailto:hello@chriskrycho.com?subject=Re%3A%20How%20to%20Do%20a%20TypeScript%20Conversion%0A
https://news.ycombinator.com/item?id=38145194
https://news.ycombinator.com/item?id=38145194
https://lobste.rs/s/zgxiph/how_do_typescript_conversion

ABOU T: I’m Chris Krycho—a follower of Christ, a husband, and a dad. I’m a
software engineer by trade; a theologian by vocation; and a writer,
runner and cyclist, composer, and erstwhile podcaster by hobby.

SU P P ORT: If you especially like what I’m doing here, you can buy me a book, or
click the a�liate links in book reviews!

https://v5.chriskrycho.com/cv/
https://www.strava.com/athletes/chriskrycho
https://soundcloud.com/chriskrycho/tracks
https://buymeacoffee.com/chriskrycho

