
ᕕ(ᐛ)ᕗ Herman's blog

Home Projects Podcast Blog

How Bear does analytics with CSS

01 Nov, 2023

Bear Blog has a few design constraints for speed, efficiency, and stability. There are many great

open-source, privacy-focussed analytics platforms out there, but I wanted to build one native to Bear.

tldr;

One of my constraints for Bear is to not use client-side javascript. This applies to the analytics system

as well. Client-side javascript can be tweaked to determine the authenticity of traffic to a page and

determine (partially) whether it is bot traffic or not, which is very useful for analytics. The main

downside, however, is that most adblockers block analytics scripts. And not just the bad ones, like

Google Analytics. Even Fathom and Plausible analytics struggle with logging activity on adblocked

browsers.

There's always the option of just parsing server logs, which gives a rough indication of the kinds of

traffic accessing the server. Unfortunately all server traffic is generally seen as equal. Technically bots

"should" have a user-agent that identifies them as a bot, but few identify that since they're trying to

scrape information as a "person" using a browser. In essence, just using server logs for analytics

gives a skewed perspective to traffic since a lot of it are search-engine crawlers and scrapers (and

now GPT-based parsers).

So instead of using server logs, I trigger a read with CSS. Here's my slightly boutique analytics

system.

When a person accesses the website the page is loaded. On each page I have the following CSS:

body:hover {

 border-image: url("/hit/{{ post.id }}/?ref={{ request.META.HTTP_REFERER }}");

}

The only info I need to actively re-add to this request is the referrer (yes, HTTP_REFERER is spelt

incorrectly).

Now, when a person hovers their cursor over the page (or scrolls on mobile) it triggers body:hover

which calls the URL for the post hit. I don't think any bots hover and instead just use JS to interact

with the page, so I can, with reasonable certainty, assume that this is a human reader.

https://herman.bearblog.dev/
https://herman.bearblog.dev/
https://herman.bearblog.dev/
https://herman.bearblog.dev/
https://herman.bearblog.dev/projects/
https://herman.bearblog.dev/podcast/
https://herman.bearblog.dev/blog/
https://en.wikipedia.org/wiki/HTTP_referer
https://en.wikipedia.org/wiki/HTTP_referer

I then confirm the user-agent isn't a bot (which isn't perfect, but still something). I also extract the

browser and platform from the user-agent string.

My second constraint is to not store any identifying information about the reader either in browser

cookies, or on the server. In order to do this I use the IP address of the request to determine the

country, then hash the IP address along with the date. All subsequent requests to the page are

checked for matching IP address + date hashes and duplicates are discarded.

In this way each IP address per day constitutes one "read" of the page. No IP addresses are stored

un-hashed and the IP-with-date-hash creates a convenient built-in expiry time.

Here's the code if you're interested:

user_agent = httpagentparser.detect(self.request.META.get('HTTP_USER_AGENT', None))

if user_agent.get('bot', False):

 print('Bot traffic')

 return

ip_hash = hashlib.md5(f"{client_ip(self.request)}-{timezone.now().date()}".encode('utf-8')

country = get_user_location(client_ip(self.request)).get('country_name', '')

device = user_agent.get('platform', {}).get('name', '')

browser = user_agent.get('browser', {}).get('name', '')

referrer = self.request.GET.get('ref', '')

if referrer:

 referrer = urlparse(referrer)

 referrer = '{uri.scheme}://{uri.netloc}/'.format(uri=referrer)

Hit.objects.get_or_create(

 post_id=self.pk,

 ip_address=ip_hash,

 referrer=referrer,

 country=country,

 device=device,

 browser=browser)

The only downside to this method is if there are multiple reads from the same IP address but on

separate devices, it will still only be seen as one read. And I'm okay with that since it constitutes such

a minor fragment of traffic. This provides an accurate count of reads and I feel is more concise and

simpler than many other forms of analytics capture.

tldr;

I use CSS to trigger a url analytics endpoint on body:hover , determine useful information from the IP

address and user-agent, then hash the IP address with the date to create a unique "read" of a page.

Enjoyed the article? I write about 1-2 a month. Subscribe via email or RSS feed.

96

Made with Bear ʕ•ᴥ•ʔ

https://herman.bearblog.dev/subscribe/
https://herman.bearblog.dev/feed/
https://bearblog.dev/

