
matklad About Resume Links

Two Kinds of Code Review
Jan 3, 2021

I’ve read a book about management and it helped me to solve a long-standing personal
conundrum about the code review process. The book is “High Output Management”.
Naturally, I recommend it (and read this “review” as well: https://apenwarr.ca/log/2019092
6).

One of the smaller ideas of the book is that of the managerial meddling. If my manager
micro-manages me and always tells me what to do, I’ll grow accustomed to that and won’t be
able to contribute without close supervision. This is a facet of a more general Task-Relevant
Maturity framework. Irrespective of the overall level of seniority, a person has some expertise
level for each speci�c task. The optimal quantity and quality of supervisor’s involvement
depends on this level (TRM). When TRM grows, the management style should go from
structured control to supervision to nudges and consultations. I don’t need a ton of support
when writing Rust, I can bene�t a lot from a thorough review when coding in Julia and I
certainly require hand-holding when attempting to write Spanish! But the overarching goal
is to improve my TRM, as that directly improves my productivity and frees up my
supervisor’s time. The problem with meddling is not excessive control (it might be
appropriate in low-TRM situations), it is that meddling removes the motivation to learn to
take the wheel yourself.

Now, how on earth all this managerial gibberish relates to the pull request review? I now
believe that there are two largely orthogonal (and even con�icting) goals to a review process.

One goal of a review process is good code. The review ensures that each change improves the
overall quality of a code base. Without continuous betterment any code under change
reverts to the default architecture: a ball of goo.

Another goal of a review is good coders. The review is a perfect mentorship opportunity, it is a
way to increase contributor’s TRM. This is vital for community-driven open-source
projects.

I personally always felt that the review process I use falls quite short of the proper level of
quality. Which didn’t really square with me bootstrapping a couple of successful open source
projects. Now I think that I just happen to optimize for the people’s aspect of the review

https://matklad.github.io/
https://matklad.github.io/about.html
https://matklad.github.io/resume.html
https://matklad.github.io/links.html
https://apenwarr.ca/log/20190926
https://apenwarr.ca/log/20190926
http://hintjens.com/blog:106
http://hintjens.com/blog:106

process, while most guides (with a notable exception of Optimistic Merging) focus on code
aspects.

Now, (let me stress this point), I do not claim that the second goal is inherently better
(though it sounds nicer). It’s just that in the context of both IntelliJ Rust and rust-analyzer
(green-�eld projects with massive scope, big uncertainties and limited payed-for hours)
growing the community of contributors and maintainers was more important than
maintaining perfectly clean code.

Reviews for quality are hard and time consuming. I personally can’t really review the code
looking at the di�, I can give only super�cial comments. To understand the code, most of the
time I need to fetch it locally and to try to implement the change myself in a di�erent way. To
make a meaningful suggestion, I need to implement and run it on my machine (and the �rst
two attempts won’t �y). Hence, a proper review for me takes roughly the same time as the
implementation itself. Taking into account the fact that there are many more contributors
than maintainers, this is an instant game over for reviews for quality.

Luckily, folks submitting PRs generally have medium/high TRM. They were able to
introduce themselves to the codebase, �nd an issue to work on and come up with a working
code without me! So, instead of scrutinizing away every last bit of di�’s imperfection, my
goal is to promote the contributor to an autonomous maintainer status. This is mostly just a
matter of trust. I don’t read every line of code, as I trust the author of the PR to handle ifs
and whiles well enough (this is the major time saver). I trust that people address my
comments and let them merge their own PRs (bors d+). I trust that people can review
other’s code, and share commit access (r+) liberally.

Note that explicit calls for contribution such as “good �rst issue” labels tend to attract
less experienced contributors. When applying this label, make sure that you are ready to
closely mentor the PR.

What new contributors don’t have and what I do talk about in reviews is the understanding
of project-speci�c architecture and values. These are best demonstrated on speci�c issues
with the di�. But the focus isn’t the improvement of a speci�c change, the focus is teaching
the author of (hopefully) subsequent changes. I liberally digress into discussing general code
philosophy issues. As disseminating this knowledge 1-1 is not very e�cient, I also try to
document it. Rather than writing a PR comment, I put the text into architecture.md or
style.md and link that instead. I also try to do only a small �xed number of review rounds.
Roughly, the PR is merged after two round-trips, not when there’s nothing left to improve.

http://hintjens.com/blog:106
https://intellij-rust.github.io/
https://rust-analyzer.github.io/
https://bors.tech/documentation/
https://github.com/rust-analyzer/rust-analyzer/blob/41454eb1ebc87c0f35d247bfb600e775abe022f4/docs/dev/architecture.md
https://github.com/rust-analyzer/rust-analyzer/blob/41454eb1ebc87c0f35d247bfb600e775abe022f4/docs/dev/style.md

All this de�nitely produces warm fuzzy feelings, but what about code quality? Gating PRs
on quality is one, but not the only one, way to maintain clean code. The approach I use
instead is continuous reafactoring / asynchronous reviews. One of the (documented) values
in rust-analyzer is that anyone is allowed and encouraged to refactor all the code, old and
new.

Instead of blocking the PR, I merge it and then refactor the code in a follow-up (ccing the
original author), when I touch this area next time. This gives me a much better context than
a di� view, as I can edit the code in-place and run the tests. I also don’t waste time
transforming the change I have in mind to a PR comment (the motivation bits go directly
into comment/commit message). It’s also easy to do unrelated drive-by �xes!

I wish this asynchronous review work�ow was better supported by tools. By default, changes
are merged by the author, but the PR also goes to a review queue. Later, the reviewer looks at
the merged code in the main branch. Any suggestions are submitted as a new PR, with the
original author set as a reviewer. (The in-editor reviewing reminds me iron work�ow.)

For conclusion, let me reference another book. I like item 32 from “C++ Coding Standards”:
be clear what kind of class you’re writing. A value type is not an interface is not a base class.
All three are classes, but each needs a unique set of rules.

When doing/receiving a code review, understand the context and purpose. If this is a
homework assignment, you want to share knowledge. In a critical crypto library, you need
perfect code. And for a young open source project, you aim to get a co-maintainer!

 �x typo rss matklad

https://blog.janestreet.com/putting-the-i-back-in-ide-towards-a-github-explorer/
https://github.com/matklad/matklad.github.io/edit/master/src/posts/2021-01-03-two-kinds-of-code-review.dj
https://matklad.github.io/feed.xml
https://github.com/matklad

