
nearform / temporal_tables Public

Temporal Tables
cici passingpassing

This is an attempt to rewrite the postgresql temporal_tables
extension in PL/pgSQL, without the need for external c
extension.

The goal is to be able to use it on AWS RDS and other hosted
solutions, where using custom extensions or c functions is not
an option.

The version provided in versioning_function.sql is a drop-
in replacement.

About

Postgresql temporal_tables
extension in PL/pgSQL, without the
need for external c extension.

hacktoberfest

 Readme

 View license

 Activity

 492 stars

 106 watching

 65 forks

Report repository

Releases 3

v0.5.0 Latest

on Jul 26

+ 2 releases

Contributors 14

+ 3 contributors

Languages

PLpgSQL 87.4% Makefile 6.3%

Shell 4.4% JavaScript 1.9%

Code Issues 1 Pull requests 1 Actions Security Insights

 master Code

radomird Add set_system_time function (… … on Sep 20 74

.github Bump actions/checkout from 3 t… last month

scripts Add set_system_time function (… last month

test Add set_system_time function (… last month

.gitignore Support history tables with differ… 6 years ago

LICENSE Update LICENSE 6 years ago

Makefile Add set_system_time function (… last month

README.md Add set_system_time function (… last month

package.json chore: release v0.5.0 (#56) 3 months ago

system_time… Add set_system_time function (… last month

versioning_f… Add set_system_time function (… last month

versioning_f… Add set_system_time function (… last month

README.md

https://github.com/nearform
https://github.com/nearform/temporal_tables
https://github.com/nearform/temporal_tables/workflows/ci/badge.svg
https://github.com/nearform/temporal_tables/workflows/ci/badge.svg
https://github.com/arkhipov/temporal_tables
https://github.com/topics/hacktoberfest
https://github.com/nearform/temporal_tables/blob/master/LICENSE
https://github.com/nearform/temporal_tables/blob/master/LICENSE
https://github.com/nearform/temporal_tables/activity
https://github.com/nearform/temporal_tables/activity
https://github.com/nearform/temporal_tables/stargazers
https://github.com/nearform/temporal_tables/stargazers
https://github.com/nearform/temporal_tables/watchers
https://github.com/nearform/temporal_tables/watchers
https://github.com/nearform/temporal_tables/forks
https://github.com/nearform/temporal_tables/forks
https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fnearform%2Ftemporal_tables&report=nearform+%28user%29
https://github.com/nearform/temporal_tables/releases
https://github.com/nearform/temporal_tables/releases
https://github.com/nearform/temporal_tables/releases
https://github.com/nearform/temporal_tables/releases/tag/v0.5.0
https://github.com/nearform/temporal_tables/releases
https://github.com/nearform/temporal_tables/graphs/contributors
https://github.com/paolochiodi
https://github.com/paolochiodi
https://github.com/apps/dependabot
https://github.com/apps/dependabot
https://github.com/apps/optic-release-automation
https://github.com/apps/optic-release-automation
https://github.com/dynajoe
https://github.com/dynajoe
https://github.com/yktv4
https://github.com/yktv4
https://github.com/ps2goat
https://github.com/ps2goat
https://github.com/washingtonsoares
https://github.com/washingtonsoares
https://github.com/benji-york
https://github.com/benji-york
https://github.com/bredikhin
https://github.com/bredikhin
https://github.com/dzolo
https://github.com/dzolo
https://github.com/nathanielobrown
https://github.com/nathanielobrown
https://github.com/nearform/temporal_tables/graphs/contributors
https://github.com/nearform/temporal_tables/search?l=plpgsql
https://github.com/nearform/temporal_tables/search?l=makefile
https://github.com/nearform/temporal_tables/search?l=shell
https://github.com/nearform/temporal_tables/search?l=javascript
https://github.com/nearform/temporal_tables
https://github.com/nearform/temporal_tables/issues
https://github.com/nearform/temporal_tables/pulls
https://github.com/nearform/temporal_tables/actions
https://github.com/nearform/temporal_tables/security
https://github.com/nearform/temporal_tables/pulse
https://github.com/nearform/temporal_tables/commits?author=radomird
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commits/master
https://github.com/nearform/temporal_tables/commits/master
https://github.com/nearform/temporal_tables/tree/master/.github
https://github.com/nearform/temporal_tables/commit/c5046a6e708197a03feeecf502cbe6bc3fdee36b
https://github.com/nearform/temporal_tables/commit/c5046a6e708197a03feeecf502cbe6bc3fdee36b
https://github.com/nearform/temporal_tables/commit/c5046a6e708197a03feeecf502cbe6bc3fdee36b
https://github.com/nearform/temporal_tables/tree/master/scripts
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/tree/master/test
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/blob/master/.gitignore
https://github.com/nearform/temporal_tables/commit/ad99ed1074b271932adb8125bb71ca7e49828b1c
https://github.com/nearform/temporal_tables/commit/ad99ed1074b271932adb8125bb71ca7e49828b1c
https://github.com/nearform/temporal_tables/commit/ad99ed1074b271932adb8125bb71ca7e49828b1c
https://github.com/nearform/temporal_tables/blob/master/LICENSE
https://github.com/nearform/temporal_tables/commit/a74c0580ed357324deae268349da5a95d950673c
https://github.com/nearform/temporal_tables/blob/master/Makefile
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/blob/master/README.md
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/blob/master/package.json
https://github.com/nearform/temporal_tables/commit/fee61f400a9f1796c41110b40e1347ea810e0b3d
https://github.com/nearform/temporal_tables/pull/56
https://github.com/nearform/temporal_tables/commit/fee61f400a9f1796c41110b40e1347ea810e0b3d
https://github.com/nearform/temporal_tables/blob/master/system_time_function.sql
https://github.com/nearform/temporal_tables/blob/master/system_time_function.sql
https://github.com/nearform/temporal_tables/blob/master/system_time_function.sql
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/blob/master/versioning_function.sql
https://github.com/nearform/temporal_tables/blob/master/versioning_function.sql
https://github.com/nearform/temporal_tables/blob/master/versioning_function.sql
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/nearform/temporal_tables/blob/master/versioning_function_nochecks.sql
https://github.com/nearform/temporal_tables/blob/master/versioning_function_nochecks.sql
https://github.com/nearform/temporal_tables/blob/master/versioning_function_nochecks.sql
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/commit/1dac089bdadbcb0671996826a639d17638b40e64
https://github.com/nearform/temporal_tables/pull/32
https://github.com/radomird

The version in versioning_function_nochecks.sql is similar
to the previous one, but all validation checks have been
removed. This version is 2x faster than the normal one, but
more dangerous and prone to errors.

With time, added some new functionality diverging from the
original implementations. New functionalities are however still
retro-compatible:

Ignore updates with no actual changes

Usage

Create a database and the versioning function:

If you would like to have set_system_time function available
(more details below) you should run the following as well:

Connect to the db:

Create the table to version, in this example it will be a
"subscription" table:

Add the system period column:

Create the history table:

createdb temporal_test
psql temporal_test < versioning_function.sql

psql temporal_test < system_time_function.sql

psql temporal_test

CREATE TABLE subscriptions
(

 name text NOT NULL,

 state text NOT NULL

);

ALTER TABLE subscriptions

 ADD COLUMN sys_period tstzrange NOT NULL DEFAULT ts

Finally, create the trigger:

A note on the history table name. Previous versions of this
extension quoted and escaped it before usage. Starting
version 0.4.0 we are not escaping it anymore and users need
to provide the escaped version as a parameter to the trigger.

This is consistent with the c version, simplifies the extension
code and fixes an issue with upper case names that weren't
properly supported.

Now test with some data:

Take some time between a query and the following, otherwise
the difference in the time periods won't be noticeable.

After all the queries are completed, you should check the
tables content.

Should return 0 rows

Should return something similar to:

name state sys_period

test1 inserted ["2017-08-01
16:09:45.542983+02","2017-08-01

CREATE TABLE subscriptions_history (LIKE subscription

CREATE TRIGGER versioning_trigger
BEFORE INSERT OR UPDATE OR DELETE ON subscriptions

FOR EACH ROW EXECUTE PROCEDURE versioning(

 'sys_period', 'subscriptions_history', true

);

INSERT INTO subscriptions (name, state) VALUES ('test

UPDATE subscriptions SET state = 'updated' WHERE name

UPDATE subscriptions SET state = 'updated twice' WHER
DELETE FROM subscriptions WHERE name = 'test1';

SELECT * FROM subscriptions;

SELECT * FROM subscriptions_history;

name state sys_period

16:09:54.984179+02")

test1 updated
["2017-08-01
16:09:54.984179+02","2017-08-01
16:10:08.880571+02")

test1
updated
twice

["2017-08-01
16:10:08.880571+02","2017-08-01
16:10:17.33659+02")

Setting custom system time

If you want to take advantage of setting a custom system time
you can use the set_system_time function. It is a port of the
original set_system_time. The function accepts string
representation of timestamp in the following format: YYYY-MM-

DD HH:MI:SS.MS.US - where hours are in 24-hour format 00-

23 and the MS (milliseconds) and US (microseconds) portions
are optional. Same as the original function, calling it with
null will reset to default setting (using the

CURRENT_TIMESTAMP):

Below is an example on how to use this function (continues
using the example from above):

Create the set_system_time function:

Set a custom value for the system time:

Now test with some data:

SELECT set_system_time(null);

psql temporal_test < system_time_function.sql

SELECT set_system_time('1999-12-31 23:59:59');

INSERT INTO subscriptions (name, state) VALUES ('test

UPDATE subscriptions SET state = 'updated' WHERE name

UPDATE subscriptions SET state = 'updated twice' WHER
DELETE FROM subscriptions WHERE name = 'test2';

https://github.com/arkhipov/temporal_tables#advanced-usage

Take some time between a query and the following, otherwise
the difference in the time periods won't be noticeable.

After all the queries are completed, you should check the
subscriptions_history table content:

Should return something similar to:

name state sys_period

test1 inserted
["2017-08-01
16:09:45.542983+02","2017-08-01
16:09:54.984179+02")

test1 updated
["2017-08-01
16:09:54.984179+02","2017-08-01
16:10:08.880571+02")

test1
updated
twice

["2017-08-01
16:10:08.880571+02","2017-08-01
16:10:17.33659+02")

test2 inserted
["1999-12-31 23:59:59+01","1999-
12-31 23:59:59.000001+01")

test2 updated
["1999-12-31
23:59:59.000001+01","1999-12-31
23:59:59.000002+01")

test2
updated
twice

["1999-12-31
23:59:59.000002+01","1999-12-31
23:59:59.000003+01")

Additional features

Ignore updates without actual change

NOTE: This feature does not work for tables with columns
with types that does not support equality operator (e.g.
PostGIS types, JSON types, etc.).

By default this extension creates a record in the history table
for every update that occurs in the versioned table, regardless
of any change actually happening.

SELECT * FROM subscriptions_history;

We added a fourth paramater to the trigger to change this
behaviour and only record updates that result in an actual
change.

It is worth mentioning that before making the change, a check
is performed on the source table against the history table, in
such a way that if the history table has only a subset of the
columns of the source table, and you are performing an
update in a column that is not present in this subset (this
means the column does not exist in the history table), this
extension will NOT add a new record to the history. Then you
can have columns in the source table that create no new
versions if modified by not including those columns in the
history table.

The paramater is set by default to false , set it to true to
stop tracking updates without actual changes:

Migrations

During the life of an application is may be necessary to
change the schema of a table. In order for temporal_tables to
continue to work properly the same migrations should be
applied to the history table as well.

What happens if a column is added to the
original table but not to the history table?

The new column will be ignored, meaning that the updated
row is transferred to the history table, but without the value of
the new column. This means that you will lose that specific
data.

There are valid use cases for this, for example when you are
not interested in storing the historic values of that column.

Beware that temporal_tables won't raise an error

CREATE TRIGGER versioning_trigger

BEFORE INSERT OR UPDATE OR DELETE ON subscriptions

FOR EACH ROW EXECUTE PROCEDURE versioning(

 'sys_period', 'subscriptions_history', true, true
);

What should I do if I need to remove a column
from the original table but want to keep the
historic values for it?

You remove the column in the original table, but keep it in the
history table - provided it accepts null values.

From that point on the old column in the history table will be
ignored and will get null values.

If the column doesn't accept null values you'll need to modify it
to allow for null values, otherwise temporal_tables won't be
able to create new rows and all operations on the original table
will fail

Test

In order to run tests:

The test suite will run the queries in test/sql and store the
output in test/result, and will then diff the output from
test/result with the prerecorded output in test/expected.

A test suite is also available for the nochecks alternative:

Obviously, this suite won't run the tests about the error
reporting.

Performance tests

For performance tests run:

This will create the temporal_tables_test database, add all
necessary tables, run test tests and drop the database.

Is it also possible to test against the nochecks version:

make run_test

make run_test_nochecks

make performance_test

or the original c extension run:

This required the original extentions to be installed, but will
automatically add it to the database.

On the test machine (my laptop) the complete version is 2x
slower than the nochecks versions and 16x slower than the
original version.

Two comments about those results:

original c version makes some use of caching (i.e to share
an execution plan), whilst this version doesn't. This is
propably accounting for a good chunk of the performance
difference. At the moment there's not plan of
implementing such caching in this version.

The trigger still executes in under 1ms and in production
environments the the network latency should be more
relevant than the trigger itself.

The team

Paolo Chiodi

https://github.com/paolochiodi

https://twitter.com/paolochiodi

Acknowledgements

This project was kindly sponsored by nearForm.

License

Licensed under MIT.

The test scenarios in test/sql and test/expected have been
copied over from the original temporal_tables extension,
whose license is BSD 2-clause

make performance_test_nochecks

make performance_test_original

https://github.com/paolochiodi
https://twitter.com/paolochiodi
http://nearform.com/
https://github.com/nearform/temporal_tables/blob/master/LICENSE
https://github.com/arkhipov/temporal_tables/blob/master/LICENSE

