
Benji WeberBenji WeberBenji Weber

Tweet

Engineering Team Lessons
from Cycling

Posted October 15, 2023 under Leadership, XP.

Cycling provides interesting examples for
software development. It’s possible to race
individually or in teams. A group that’s an effective
team will outperform the same group acting as
individuals every time. Teams compete towards a goal,
and also against the environment, and many other
teams, all with their own tactics, all at the same time.

Ensemble working provides an
Advantage
Cycling teams working together in a paceline can travel

significantly faster—via the aerodynamic advantage of

drafting the slipstream of the rotating leading rider.

More Articles

Engineering Team Lessons
from Cycling

One does not simply deliver
software

Do you need a Strong
Leader?

Supporting Sustainability

Pondering Agile Principles

Cost of Attrition

Uncovering Better Ways

Don’t hire top talent; hire for
weaknesses.

Escape the Permission Trap
with Healthy Habits

Thinking in Questions with
SQL

Leadership Language
Lessons from Star Trek

Java 16 Pattern Matching
Fun

We got lucky

Revisiting Html in Java

Meetings, ugh! Let’s change

http://benjiweber.co.uk/
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fbenjiweber.co.uk%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Eshare%7Ctwgr%5E&text=Engineering%20Team%20Lessons%20from%20Cycling&url=https%3A%2F%2Fbenjiweber.co.uk%2Fblog%2F2023%2F10%2F15%2Fengineering-team-lessons-from-cycling%2F&via=benjiweber
https://twitter.com/benjiweber
https://twitter.com/benjiweber
https://benjiweber.co.uk/blog/posts/leadership/
https://benjiweber.co.uk/blog/posts/xp/
https://en.wikipedia.org/wiki/Road_bicycle_racing#Tactics
https://benjiweber.co.uk/blog/2023/10/15/engineering-team-lessons-from-cycling/
https://benjiweber.co.uk/blog/2023/10/15/engineering-team-lessons-from-cycling/
https://benjiweber.co.uk/blog/2023/10/15/one-does-not-simply-deliver-software/
https://benjiweber.co.uk/blog/2023/10/15/one-does-not-simply-deliver-software/
https://benjiweber.co.uk/blog/2022/10/08/do-you-need-a-strong-leader/
https://benjiweber.co.uk/blog/2022/10/08/do-you-need-a-strong-leader/
https://benjiweber.co.uk/blog/2022/01/30/supporting-sustainability/
https://benjiweber.co.uk/blog/2022/01/30/pondering-agile-principles/
https://benjiweber.co.uk/blog/2022/01/12/cost-of-attrition/
https://benjiweber.co.uk/blog/2021/07/03/uncovering-better-ways/
https://benjiweber.co.uk/blog/2021/04/10/dont-hire-top-talent-hire-for-weaknesses/
https://benjiweber.co.uk/blog/2021/04/10/dont-hire-top-talent-hire-for-weaknesses/
https://benjiweber.co.uk/blog/2021/03/28/escape-the-permission-trap-with-healthy-habits/
https://benjiweber.co.uk/blog/2021/03/28/escape-the-permission-trap-with-healthy-habits/
https://benjiweber.co.uk/blog/2021/03/21/thinking-in-questions-with-sql/
https://benjiweber.co.uk/blog/2021/03/21/thinking-in-questions-with-sql/
https://benjiweber.co.uk/blog/2021/03/14/leadership-language-lessons-from-star-trek/
https://benjiweber.co.uk/blog/2021/03/14/leadership-language-lessons-from-star-trek/
https://benjiweber.co.uk/blog/2021/03/14/java-16-pattern-matching-fun/
https://benjiweber.co.uk/blog/2021/03/14/java-16-pattern-matching-fun/
https://benjiweber.co.uk/blog/2021/03/07/we-got-lucky/
https://benjiweber.co.uk/blog/2021/02/28/revisiting-html-in-java/
https://benjiweber.co.uk/blog/2021/02/06/meetings-ugh-lets-change-our-language/
https://benjiweber.co.uk/blog/2021/02/06/meetings-ugh-lets-change-our-language/
https://benjiweber.co.uk/blog/2021/02/06/meetings-ugh-lets-change-our-language/
https://benjiweber.co.uk/blog/2021/02/06/meetings-ugh-lets-change-our-language/

Software teams can build more stuff if each person works

independently, than when working together. However, they’ll

reach a team goal the fastest through working together, on

the same stuff, at the same time, via pair or ensemble

programming.

Having all the perspectives, experience, and expertise

available at the point of meeting resistance from unknown

challenges, results in a sort of aerodynamic advantage. We

get stuck for less long, and overcome obstacles more

easily.

A pair may not be twice as fast at shipping stuff as two

people, but shipping stuff is not important. Working together

they’ll achieve a goal a bit faster. Our goals have a cost of

delay. The ability to ship a capability with associated

revenue significantly faster, more than makes collaborative

working worthwhile.

our language

Latency Numbers Every
Team Should Know

Humility

Sealed Java State Machines

A little rant about talent

Fun with Java Records

The benefits of making code
worse

Reasons to hire
inexperienced engineers

Do you CI?

Learning from Pain

The unsung upsides of
staying put

Follow @benjiweber

https://ensembleprogramming.xyz/
https://ensembleprogramming.xyz/
https://benjiweber.co.uk/blog/2021/02/06/meetings-ugh-lets-change-our-language/
https://benjiweber.co.uk/blog/2021/01/23/latency-numbers-every-team-should-know/
https://benjiweber.co.uk/blog/2021/01/23/latency-numbers-every-team-should-know/
https://benjiweber.co.uk/blog/2020/11/22/humility/
https://benjiweber.co.uk/blog/2020/10/03/sealed-java-state-machines/
https://benjiweber.co.uk/blog/2020/09/19/a-little-rant-about-talent/
https://benjiweber.co.uk/blog/2020/09/19/fun-with-java-records/
https://benjiweber.co.uk/blog/2020/09/12/the-benefits-of-making-code-worse/
https://benjiweber.co.uk/blog/2020/09/12/the-benefits-of-making-code-worse/
https://benjiweber.co.uk/blog/2020/09/06/reasons-to-hire-inexperienced-engineers/
https://benjiweber.co.uk/blog/2020/09/06/reasons-to-hire-inexperienced-engineers/
https://benjiweber.co.uk/blog/2020/02/12/do-you-ci/
https://benjiweber.co.uk/blog/2018/09/12/learning-from-pain/
https://benjiweber.co.uk/blog/2018/08/20/the-unsung-upsides-of-staying-put/
https://benjiweber.co.uk/blog/2018/08/20/the-unsung-upsides-of-staying-put/
https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fbenjiweber.co.uk%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Efollow%7Ctwgr%5Ebenjiweber®ion=follow_link&screen_name=benjiweber

Individual working provides an
Advantage
Cycling teams are comprised of multiple people, they can

send riders back for hydration & energy food. They can send

riders ahead to mark breakaways and mitigate the risk of the

breakaway succeeding at remaining ahead until the end of

the race.

Software teams that are paying attention, will see side

opportunities & risks that are tangential to the main focus but

too big to ignore. Often it helps for one or two people to go

after them. Builds getting slow; someone peels off from the

group to go fix that. Competitor launched a new product;

someone peels off to explore how it works and whether

should this change our plans.

Competitive Market
Unlike many pitch team sports where teams compete head

to head, cycling teams compete against several other

teams, at the same time. Each competitive team will employ

their own tactics. Some teams may be more interested in

overall win, or other incentives available such as

intermediate sprints. Tactics have to take into account all the

competition, not just a single opposing team. There are also

environmental factors on the day such as wind and rain

conditions, and the terrain.

Organisations building software are competing against many

other organisations with directly or indirectly competing

interests.

Sometimes it is advantageous to collaborate with the

competition to conserve resources by working together.

Cycling teams can work together to increase the chance of

leading the race through a breakaway. Software builders

partnering with competitors can build an ecosystem to grow

the opportunity available to all parties.

Other times there’s an opportunity to get ahead of the

competition by creating a break that your team is uniquely

positioned to take advantage of.

Adapt to the riding conditions. Lightweight for climbing or

Aero for flat. Wet or Dry. Similarly, as the economic climate

changes, so do the tactics that are most successful for

building software.

Dynamic Reteaming to Breakaway
Working together, a breakaway made up of individuals from

multiple teams can stay ahead of the race. They must take

their own share of the hard work in the wind, and

communicate effectively. If they refuse to help each other,

the breakaway will fail, and will be absorbed. Breakaways

often fail when competing incentives and ineffective

communication reduce their advantage over the main

peloton.

https://wardleypedia.org/mediawiki/index.php/Gameplay_Patterns#Ecosystem

There’s often a need and benefit to pulling together or self

organising temporary short lived software teams. They can

effectively chase an immediate goal that doesn’t neatly map

to the existing team structure.

Dynamic reteaming can be far more effective than

dependencies between teams, and like a breakaway it can

rapidly get ahead of what an unchanged organisation

structure could achieve.

Temporary teams also often struggle to communicate as

effectively as a well established team; lacking the trust that

comes from experience working with each other.

Marginal Gains Add Up
A clean well-lubricated chain could save you 5 watts, adding

up to several seconds advantage over a race. Small tweaks

to fitness training habits every day can add up to an

advantage over a season.

https://www.heidihelfand.com/dynamic-reteaming/

Software teams often underestimate how quickly small

investments in their own effectiveness cumulatively create

an advantage. Time spent making your deploy pipeline a

couple of minutes faster, or time automating manual

onboarding steps. The wins from these add up over time to

help you outpace the rest.

Specialists
You need specialists: climbers & sprinters. The rest of the

team help get them in position at the right time for the

challenges that they can best help with. Get your sprinters to

the front of the race with a leadout in time for the sprints. Do

the hard work to protect your race-winner’s ability to take

advantage of a tactical opportunity when it comes. However,

everyone needs to finish the race. Sprinters must be able to

get over the mountains within the time limit.

Effective software teams have a mix of generalising

specialists. They can all muck-in with whatever needs to be

done towards the team goal. There’s also huge value to

having the person with expertise in building UIs, the person

with Data Science expertise, or the person who’s scaled

databases. The right specialists enable help the team to

overcome challenges.

Support Staff

Teams need support staff. If riders had to stop and repair

their own mechanical issues, or carry their own food they’d

be far slower.

Engineering teams benefit from internal platforms, and

developer experience tooling support functions. Invest a

portion of your budget in these.

Beware Incentives
Unglamourous work is essential to team success. Teams are

ruined if everyone tries to go for the win.

Cycling teams need domestiques who will protect the

leaders and fetch food. Software teams need people who’ll

do glue work. People who help the whole team

communicate. People who remove the friction slowing the

team down.

Organisational incentives often risk this essential work and

destroy the potential of teams.

Incentivise each of your riders to go for the win and the team

will fail.

Incentivise each of your developers to chase promotions

and compensation increases, on the basis of their individual

impact, and your team will be ineffective.

Incentivise each of your

developers to chase promotions

and compensation increases, on

the basis of their individual

https://noidea.dog/glue

impact, and your team will be

ineffective.

Work Sustainably
Pace yourselves. Only go all out when there’s a need for it,

or you’ll not have the energy when it is needed. There’s a

sprint at the end of the race. There’s another stage

tomorrow. Don’t drop out.

If you are successful, there will be production incidents and

customer crises to handle. These will take your energy

reserves.

If you run at 100% every day you’ll have nothing left to give

when there’s a real need.

Leave a Reply

Name (required)

Supporting Sustainability

Many software teams struggle with ever growing cost of change, and
technical debt that risks overwhelming them. It’s always interesting to

talk with folks and understand, how the system and incentives created
this state. Often I hear from software engineers that management doesn’t
give them permission for (or doesn’t prioritise) work such as tidying,
refactoring, … Continue reading

 0 Benji's Blog

Tweet Follow @benjiweber

Your Name

https://benjiweber.co.uk/blog/2022/01/30/supporting-sustainability/
https://benjiweber.co.uk/blog/2022/01/30/supporting-sustainability/
https://benjiweber.co.uk/blog/2022/01/30/supporting-sustainability/#respond
https://benjiweber.co.uk/blog
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fbenjiweber.co.uk%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Eshare%7Ctwgr%5E&text=Engineering%20Team%20Lessons%20from%20Cycling&url=https%3A%2F%2Fbenjiweber.co.uk%2Fblog%2F2023%2F10%2F15%2Fengineering-team-lessons-from-cycling%2F&via=benjiweber
https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fbenjiweber.co.uk%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Efollow%7Ctwgr%5Ebenjiweber®ion=follow_link&screen_name=benjiweber

Mail (required)

Website

Your Comment Here…

Submit CommentSubmit Comment

Admin
Log in
Entries feed
Comments feed
WordPress.org

320press© Benji's Blog

Your Email

Your Website

https://benjiweber.co.uk/blog/wp-login.php
https://benjiweber.co.uk/blog/feed/
https://benjiweber.co.uk/blog/comments/feed/
https://wordpress.org/
http://320press.com/

