
One of the most popular features of PostGIS 2.5 was the introduction of the "vector

tile" output format, via the ST_AsMVT() function.

Vector tiles are a transport format for efficiently sending map data from a server to a

client for rendering. The vector tile specification describes how raw data are quantized

to a grid and then compressed using delta-encoding to make a very small package.

Prior to ST_AsMVT(), if you wanted to produce vector tiles from PostGIS you would

use a rendering program (MapServer, GeoServer, or Mapnik) to read the raw data

from the database, and process it into tiles.

Minimal Tile Architecture

Spatial

Serving Dynamic Vector Tiles from PostGIS
Paul Ramsey

Jul 9, 2019 · 6 min read

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://postgis.net/docs/ST_AsMVT.html
https://docs.mapbox.com/vector-tiles/specification/
https://postgis.net/docs/ST_AsMVT.html
https://mapserver.org/
https://geoserver.org/
https://mapnik.org/
https://www.crunchydata.com/blog/topic/spatial
https://www.crunchydata.com/blog/author/paul-ramsey
https://www.crunchydata.com/blog/author/paul-ramsey
https://www.crunchydata.com/
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

With ST_AsMVT() it is now possible to move all that processing into the database,

which opens up the possibility for very lightweight tile services that do little more than

convert map tile requests into SQL for the database engine to execute.

There are already several examples of such light-weight services.

Dirt-Simple PostGIS HTTP API

Postile

Martin

However, for learning purposes, here's a short example that builds up a tile server and

map client from scratch.

Minimal MVT Server

This minimal tile server is in Python, but there's no reason you couldn't execute one in

any language you like: it just has to be able to connect to PostgreSQL, and run as an

HTTP service.

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://postgis.net/docs/ST_AsMVT.html
https://github.com/tobinbradley/dirt-simple-postgis-http-api
https://github.com/Oslandia/postile
https://github.com/urbica/martin
https://github.com/pramsey/minimal-mvt
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

What are Tiles

A digital map is theoretically capable of viewing data at any scale, and for any region

of interest. Map tiling is a way of constraining the digital mapping problem, just a little,

to vastly increase the speed and efficiency of map display.

Instead of supporting any scale, a tiled map only provides a limited collection of

scales, where each scale is a factor of two more detailed than the previous one.

Instead of rendering data for any region of interest, a tiled map only renders it

over a fixed grid within the scale, and composes arbitrary regions by displaying

appropriate collections of tiles.

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

Most tile maps divide the world by starting with a single tile that encompasses the

entire world, and calls that "zoom level 0". From there, each succeeding "zoom level"

increases the number of tiles by a factor of 4 (twice as many vertically and twice and

many horizontally).

Tile Coordinates
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

Any tile in a tiled map can be addressed by referencing the zoom level it is on, and its

position horizontally and vertically in the tile grid. The commonly used "XYZ"

addressing scheme counts from zero, with the origin at the top left.

This example is for zoom level 2 (2^zoom = 4 tiles per size).

The web addresses of tiles in the "XYZ" scheme embed the "zoom", "x" and "y"

coordinates into a web address:

http://server/{z}/{x}/{y}.format

For example, you can see the tile that encompasses Australia (zoom=2, x=3, y=2) in

the tilesets of a number of map providers:

https://tile.openstreetmap.org/2/3/2.png

http://a.basemaps.cartocdn.com/light_all/2/3/2.png

http://a.tile.stamen.com/toner/2/3/2.png

ST_AsMVTGeom() and ST_AsMVT()
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://tile.openstreetmap.org/2/3/2.png
http://a.basemaps.cartocdn.com/light_all/2/3/2.png
http://a.tile.stamen.com/toner/2/3/2.png
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

Building a map tile in the database involves feeding data through not one, but two

PostGIS functions:

ST_AsMVTGeom()

ST_AsMVT()

Vector features in a MVT map tile are highly processed, and the ST_AsMVTGeom()

function performs that processing:

clip the features to the tile boundary;

translate from cartesian coordinates (relative to geography) to image coordinates

(relative to top left of image);

remove extra vertices that will not be visible at tile resolution; and,

quantize coordinates from double precision to the tile resolution in integers.

So any query to generate MVT tiles will involve a call to ST_AsMVTGeom() to

condition the data first, something like:

SELECT ST_AsMVTGeom(geom) AS geom, column1, column2
FROM myTable

The MVT format can encode both geometry and attribute information, in fact that is

one of the things that makes it so useful: client-side interactions can be much richer

when both attributes and shapes are available on the client.

In order to create tiles with geometry and attributes, ST_AsMVT() function takes in a

record type. So SQL calls that create tiles end up looking like this:

SELECT ST_AsMVT(mvtgeom.*)
FROM (

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://postgis.net/docs/ST_AsMVTGeom.html
https://postgis.net/docs/ST_AsMVT.html
https://postgis.net/docs/ST_AsMVTGeom.html
https://postgis.net/docs/ST_AsMVTGeom.html
https://postgis.net/docs/ST_AsMVT.html
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

 SELECT ST_AsMVTGeom(geom) AS geom, column1, column2
 FROM myTable
) mvtgeom

We'll see this pattern again as we build out the SQL queries generated by the tile

server.

Tile Server

The job of our minimal web tile server is to convert from tile coordinates, to a SQL

query that creates an equivalent vector tile.

First the pathToTile function strips out the x, y and z components from the request.

Then tileIsValid confirms that the values make sense. Each zoom level can only have

tile coordinates between 0 and 2^zoom - 1 so we check that values are in range.

"XYZ" tile maps are usually in a projection called "spherical mercator" that has the nice

property of forming a neat square, about 40M meters on a side, over (most of) the

earth at zoom level zero.

From the that square starting point, tileToEnvelope subdivides it to find the size of a

tile at the requested zoom level, and then the coordinates of the tile in the mercator

projection.

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://github.com/pramsey/minimal-mvt/blob/master/minimal-mvt.py
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L36-L45
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L48-L60
https://epsg.io/3857
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L48-L60
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

Now we can start constructing the SQL to generate the MVT format tile. First

envelopeToBoundsSQL converts our envelope in python into SQL that will generate an

equivalent envelope in the database we can use to query and clip the raw data.

With the bounds SQL we are now ready to calculate the full MVT-generating SQL

statement in envelopeToSQL:

WITH
bounds AS (
 SELECT {env} AS geom,
 {env}::box2d AS b2d
),
mvtgeom AS (
 SELECT ST_AsMVTGeom(ST_Transform(t.{geomColumn}, 3857), bounds.b2d) AS geo
 {attrColumns}
 FROM {table} t, bounds
 WHERE ST_Intersects(t.{geomColumn}, ST_Transform(bounds.geom, {srid}))
)
SELECT ST_AsMVT(mvtgeom.*) FROM mvtgeom

And finally run the SQL against the database in sqlToPbf and return the MVT as a byte

array.

That's it! The main HTTP do_GET callback for the script just runs those functions in

order and sends the result back.

Handle HTTP GET requests
def do_GET(self):

 tile = self.pathToTile(self.path)
 if not (tile and self.tileIsValid(tile)):
 self.send_error(400, "invalid tile path: %s" % (self.path))
 return

 env = self.tileToEnvelope(tile)
 sql = self.envelopeToSQL(env)
 pbf = self.sqlToPbf(sql)

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L84-L91
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L94-L116
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L119-L137
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/minimal-mvt.py#L140-L159
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

 self.log_message("path: %s\ntile: %s\n env: %s" % (self.path, tile, env))
 self.log_message("sql: %s" % (sql))

 self.send_response(200)
 self.send_header("Access-Control-Allow-Origin", "*")
 self.send_header("Content-type", "application/vnd.mapbox-vector-tile")
 self.end_headers()
 self.wfile.write(pbf)

Now we have a python client we can run that will convert HTTP tile requests into MVT-

tile responses directly from the database.

http://localhost:8080/4/3/4.mvt

Map Client

Now that tiles are published, we can add our live tile layer to any web map that

supports MVT format. Two of the most popular are

OpenLayers, and

Mapbox GL JS.

Map clients convert the state of a map windows into HTTP requests for tiles to fill up a

map window. If you've used a modern web map, like Google Maps, you've used a

standard web map -- they all work the same way.

OpenLayers

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://openlayers.org/
https://docs.mapbox.com/mapbox-gl-js/overview/
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

The OpenLayers map client has been built out using the NPM module system, and

can be installed into an NPM development environment as easily as:

npm install ol

The example OpenLayers map for this post combines a standard raster base layer

with an active layer from a PostgreSQL database accessed via our tile server.

var vtLayer = new VectorTileLayer({

 declutter: false,

 source: new VectorTileSource({

 format: new MVT(),

 url: 'http://localhost:8080/{z}/{x}/{y}.pbf'

 }),

 style: new Style({

 stroke: new Stroke({

 color: 'red',

 width: 1

 })

 })

});

Mapbox GL JS

The Mapbox GL JS is more tightly bound to the Mapbox ecosystem, but can be run

without using Mapbox services or a Mapbox API key.

The example Mapbox map for this post can be run directly without any special

development steps. The main challenge in composing a map with Mapbox GL JS is

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://openlayers.org/
https://www.npmjs.com/
https://github.com/pramsey/minimal-mvt/tree/master/map-openlayers
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/map-openlayers/index.js#L13-L25
https://docs.mapbox.com/mapbox-gl-js/overview/
https://github.com/pramsey/minimal-mvt/blob/8b736e342ada89c5c2c9b1c77bfcbcfde7aa8d82/map-mapboxgl/index.html#L35-L40
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

understanding the style language that is used to specify both map composition and

the styling of vector data in the map.

Enjoy this article?

You will love our newsletter!

Enter your email Join The List

WRITTEN BY

Paul Ramsey
July 9, 2019 • More by this author

PRODUCTS

Crunchy Postgres

Crunchy Postgres for

Kubernetes

Crunchy Bridge

Crunchy Certified

PostgreSQL

Crunchy PostgreSQL for

Cloud Foundry

Crunchy MLS PostgreSQL

Crunchy Spatial

SERVICES & SUPPORT

Enterprise PostgreSQL

Support

Migrate from Heroku

Ansible

Red Hat Partner

Trusted PostgreSQL

Crunchy Data

Subscription

RESOURCES

Customer Portal

Software Documentation

Blog

Events

COMPANY

About Crunchy Data

Team

News

Careers

Contact Us

Newsletter

Security

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://docs.mapbox.com/mapbox-gl-js/style-spec
https://twitter.com/pwramsey
https://www.crunchydata.com/blog/author/paul-ramsey
https://www.crunchydata.com/products/crunchy-high-availability-postgresql
https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://www.crunchydata.com/products/crunchy-bridge
https://www.crunchydata.com/products/crunchy-certified-postgresql
https://www.crunchydata.com/products/crunchy-certified-postgresql
https://www.crunchydata.com/products/crunchy-postgresql-for-cloud-foundry
https://www.crunchydata.com/products/crunchy-postgresql-for-cloud-foundry
https://www.crunchydata.com/products/crunchy-mls-postgresql
https://www.crunchydata.com/products/crunchy-spatial
https://www.crunchydata.com/solutions/enterprise-postgresql-support
https://www.crunchydata.com/solutions/enterprise-postgresql-support
https://www.crunchydata.com/migrate-from-heroku
https://www.crunchydata.com/solutions/ansible
https://www.crunchydata.com/red-hat-certified-technologies
https://www.crunchydata.com/about/postgresql-enterprise-database
https://www.crunchydata.com/about/value-of-subscription
https://www.crunchydata.com/about/value-of-subscription
https://access.crunchydata.com/?CrunchyAnonId=jsrfmtqamhebnxslyqnarvfeutrwxfhgegslfnffhhzp
https://access.crunchydata.com/documentation/
https://www.crunchydata.com/blog
https://www.crunchydata.com/events
https://www.crunchydata.com/about
https://www.crunchydata.com/team
https://www.crunchydata.com/news
https://www.crunchydata.com/careers
https://www.crunchydata.com/contact
https://www.crunchydata.com/newsletter
https://www.crunchydata.com/security
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

CRUNCHY DATA NEWSLETTER

Subscribe to the Crunchy Data Newsletter to receive Postgres content every month.

Enter your email Join The List

© 2018-2023 Crunchy Data Solutions, Inc.

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. See our privacy policy to learn more.

https://www.youtube.com/c/CrunchyDataPostgres
https://www.linkedin.com/company/crunchy-data-solutions-inc-?CrunchyAnonId=jsrfmtqamhebnxslyqnarvfeutrwxfhgegslfnffhhzp
https://twitter.com/crunchydata?CrunchyAnonId=jsrfmtqamhebnxslyqnarvfeutrwxfhgegslfnffhhzp
https://github.com/CrunchyData
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy
https://www.crunchydata.com/privacy

