
Introducing Enhance Music

by Cole Peters
@colepeters@mastodon.online

on September 28, 2023

Today, the Enhance team is excited to introduce our latest demo app: Enhance Music —
a music library and audio player app built with HTML and CSS, and progressively
enhanced with a couple pinches of JavaScript. Despite being built as a traditional
multipage website, Enhance Music features an audio player that persists across page
loads, and some gorgeous interactive UI built entirely with web standards.

As with our previous demo app, Enhance Movies, Enhance Music is designed to highlight
the sort of developer and user experiences that can be achieved by focusing on building
for the web platform itself, with a bit of help from Enhance.

https://mastodon.online/@colepeters
https://enhance-music.com/
https://begin.com/blog/posts/2023-07-26-introducing-enhance-movie
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

In this article, I’ll give you an in depth look at how Enhance Music works under the hood,
with the hopes of giving you a few additions to your web development tool belt. Feel free
to take a look at the codebase as you follow along!

A fully functional music library, without the struggle stack

Highly interactive interfaces (such as one for a music player) are often cited as reasons for
employing a host of JavaScript libraries. We’re often told that the complexity of managing
interactivity inherently requires third party frameworks and abstractions of markup,
styling, and web platform APIs. I can recall this being at least occasionally true many years
ago — it used to be that building even basic interfaces such as accordions or tabbed
navigations on the web could prove to be tough without at least calling in the likes of
jQuery to tame cross browser quirks. I can also recall the many years I spent building
interfaces in React, when I’d immediately jump over to NPM as soon as I needed to build
something more trivial than putting static text on a page. (Forms? Better check NPM.

Dialogs? There’s a package for that. Animations? Spoiled for choice!)

But is this still the case in 2023? Do we need to transpile proprietary dialects of JavaScript
to describe our UI? Do we need fully featured state machines or reducer functions to
keep track of permutations of those interfaces and their data? Do we need a Single Page
App (SPA) architecture to deliver richly interactive and stateful experiences?

We’ve found that the answer to all these questions is a hard ‘nope.’

Depending on your experience — and given the ubiquity of SPAs today — this answer
may be surprising. But multipage sites aren’t the relic many might think they are. When

asked to explain his preference for multipage architectures recently, Jeremy Keith wrote
on his blog:

For most use cases, a website (or multi-page app if you prefer) is going to provide
the most robust experience for the most number of users. […]

There are some cases where you’d want a state to persist across pages. Let’s say
you’re playing a song, or a podcast episode. Ideally you’d want that player to
continue seamlessly playing even as the user navigates around the site. In that
situation, a single-page app would be a suitable architecture.

https://github.com/enhance-dev/enhance-music
https://en.wikipedia.org/wiki/Accordion_(GUI)
https://en.wikipedia.org/wiki/Tab_(interface)
https://en.wikipedia.org/wiki/Tab_(interface)
https://adactio.com/journal/20442
https://adactio.com/journal/20442
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

But that architecture comes at a cost.

I agree with Jeremy. I think there may still be some situations in which building an SPA is a
suitable choice (though amusingly given Jeremy’s example of an audio player, we’d
wrapped up Enhance Music just a day or two before).

However, I also think the number of situations in which an SPA architecture can be
recommended is dwindling, chiefly due to how good the web platform has become (and
how much better it’s getting every day). And because so much of the rest of the ‘struggle
stack’ (transpilers, unique dialects, etc.) was built to get around gaps in the web platform
that no longer exist, the use cases for these tools is dwindling in tandem.

This is good news: not only can we avoid piling up transient knowledge about a seemingly
endless stream of dependencies, we can also eject from the routine stress of those
dependencies changing or breaking under our feet and throwing wrenches into our
workflows — all while delivering more robust and performant websites to end users.

By delivering a rich (and resilient) interactive experience built solely with web standards
and a multipage architecture, Enhance Music demonstrates this premise very well. So,
without further ado, let’s start walking through how we built it.

No component is an island

The inspiration for Enhance Music came from Maxi Ferreira’s recently updated Astro
Records demo app. What’s cool about this application is that it’s actually built on a
multipage architecture, with a user experience that feels very much like an SPA. Although
you can navigate through multiple pages (a library page, individual album pages), if you
start playing a track, that audio player UI will stay with you as you move between those
pages.

This is accomplished using Astro Islands, which allows components rendered with client
side JavaScript to persist between otherwise static page loads. The result is a traditional
multipage website that gets upgraded to a more seamless experience in the browser. In
combination with the View Transitions API, this produces a very slick result.

There is a catch here, though: because Astro Islands (and other client side routing
solutions, such as Turbo Drive) rely on JavaScript to function, these persistent interfaces
can only be rendered if the application’s JavaScript downloads and executes successfully

https://begin.com/blog/posts/2023-02-21-why-does-everyone-suddenly-hate-single-page-apps
https://begin.com/blog/posts/2023-02-21-why-does-everyone-suddenly-hate-single-page-apps
https://astro-records.pages.dev/
https://astro-records.pages.dev/
https://docs.astro.build/en/concepts/islands/
https://developer.mozilla.org/en-US/docs/Web/API/View_Transitions_API
https://turbo.hotwired.dev/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

for the user. Unfortunately, that can be a big ‘if’. Not everyone has JavaScript — at least
not all the time.

This got us thinking: could we create a better experience for those users for whom
JavaScript is unavailable? How could we use a multipage architecture while allowing some
piece of our UI to persist between page loads without relying on JavaScript?

Sometimes the old ways are the best ways, and in this case, we found our answer in an
older HTML element: the Inline Frame element, better known as the iframe.

Web developers typically associate iframes with third party integrations — think of
embedding a YouTube video, Google Maps content, etc. But iframes can also be used to
embed your own content within a parent page. Additionally, using the target attribute,
links can target specific iframes within the parent document by name. Thus, if you were to
embed two iframes within a document — say, one iframe for a music library, and another
for an audio player — you could create a navigable music library in one iframe and a
persistent audio player in another.

And that’s exactly what we did.

Structuring the foundations

https://www.kryogenix.org/code/browser/everyonehasjs.html
https://scribe.rip/@jason.godesky/when-javascript-fails-52eef47e90db
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

Looking at our website’s index page, you can see the content is straightforward: one title
bar custom element, and our two iframes. When a user first accesses this page, the first
iframe will contain our music library page, while the second (reserved for the audio
player) will simply be blank, since no track has been selected yet. Wrapping this content is
our layout grid custom element, which creates a grid layout for the three
aforementioned elements. You can see that the first row of the grid will be sized
automatically based on the content (that’s where our title bar custom element goes),
while the second row (for our library iframe) will take up whatever remaining vertical
space is available in the viewport. The last row, which will hold our audio player iframe, is
sized using the grid-auto-rows property, as we’ll be doing some progressive
enhancement later on to display that iframe dynamically.

Our library page is pretty straightforward — it renders an instance of our music-
library component, which contains a layout element for our grid of albums and an
instance of our album-item element for each album in the library. Finally, each instance
of this component links to a dedicated page for its album, which is rendered primarily with
the album-data element.

The album-data element involves a bit more orchestration of styling, logic, content, and
interactivity, so let’s step through it briefly.

https://github.com/enhance-dev/enhance-music/blob/main/app/pages/index.mjs#L9-L21
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/layout-grid.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/music-library.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/music-library.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-grid.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-item.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

The markup for this element is where we structure the content pertaining to each
album. We start by reusing our album-cover element to show the album’s cover, and
then we render a header element to contain all the top level information about the
album, like its title, artist, record label, the year it was published, a link to a Bandcamp
page (if one exists), and finally, a button to start playing the album. Finally, we render the
album’s tracklisting using an ordered list, where each track gets its track number, title,
and length dumped into a link.

The way this track link is set up is important. Note that this link points to a dynamic
route for the track itself, and that the link’s target attribute is set to player . That
target attribute allows us to tell the browser to render that track’s page in our audio
player iframe, since we named that iframe player in our index page.

Thus, when a user selects a track for playback, that track will be rendered in the audio
player’s iframe, leaving the user free to continue to navigate within the library’s iframe
without affecting the audio player’s state. This gives us an audio player that follows us
around the library — with zero JavaScript required.

https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L72-L102
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-cover.mjs
https://github.com/enhance-dev/enhance-music/blob/5e50e7db0c9b1cc2268a539dacbcda9928fd014a/app/elements/album-data.mjs#L90
https://enhance.dev/docs/learn/concepts/routing/dynamic-routes
https://enhance.dev/docs/learn/concepts/routing/dynamic-routes
https://github.com/enhance-dev/enhance-music/blob/main/app/pages/index.mjs#L16-L18
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

However, this doesn’t mean we can’t use JavaScript to upgrade the user experience
when it’s available. This brings us to our first use case for progressive enhancement.

Enhancing the tracklisting

Any decent music library will provide some visual indication of which track in a tracklist is
currently playing, and with just a little JavaScript, we can make that happen.

To indicate which track is currently playing to both sighted users and those using a
screenreader, we rely on the aria-current attribute. This attribute is perfect for our
use case, as it’s meant to indicate which item within a list of items is currently active.

To begin, note that within each link in our tracklist, we render both a track index and a
playback icon in span elements. If you refer to our styles for the index and playing
classes, you’ll note that the playback icon will only be rendered within a parent that
matches the [aria-current='true'] selector — in which case, the track index (via the
index class) will not be rendered. This means that all we need to do with JavaScript is to
add the aria-current='true' attribute to the track that’s been selected by the user.
[1]

We accomplish this by registering an event handler on each track’s click event[2],
getting the track number from the track’s data attributes, and running the
setCurrent function with that track number to apply the aria-current attribute to
the correct track element. We also run this function on the initial page render, in case a
track in the album we’re viewing is already playing when the album’s page is loaded.

With this code in place, users with JavaScript available will now see a playback icon
appear in place of a track’s index when that track is played. Users without JavaScript will
miss out on this, but given that this is a non essential feature, that’s alright — that’s why
it’s called ‘progressive enhancement’ and not ‘progressive bare minimum’.

https://developer.mozilla.org/en-US/docs/Glossary/Progressive_Enhancement
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-current
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L91-L92
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L91-L92
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L26-L33
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L26-L33
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L124-L131
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L89
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L112-L114
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L112-L114
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L116-L117
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

That covers navigating between our library and its albums and choosing a track to play —
but how do we manage actually playing those tracks? Let’s dive into our audio player
implementation.

Audio players for (almost) everyone

As mentioned, each track in our album tracklist renders a link within a list item. That link, in
turn, gets targeted to our audio player iframe when clicked. The route that we point to
with each audio link gets handled by a dynamic API route (/player/$id.mjs), which is
responsible for returning the relevant track data based on the dynamic portion of our
route[3]. This data then gets passed to the audio player element via the state attribute
(which you can see in action here). Finally, our audio player element can use that data to
render our audio player.

As with the rest of our app, we want to provide users with a fully functional experience
when JavaScript is unavailable — and for that reason, we default to serving our users the
selected track via the audio element. This will allow every user who downloads our
HTML to play the audio back using a system audio player with full playback controls. The
interface may look a little different between different browsers and operating systems,
and it may not exactly match the look of the rest of our app, but that’s okay — it does a

great job of playing back the audio the user requested! (Except in Safari[4] — see that
footnote if you’re morbidly curious.)

With our ‘zero JavaScript’ happy paths now covered, we can have a little more fun when
JavaScript is available in the browser.

Enhancing the audio player

https://github.com/enhance-dev/enhance-music/blob/main/app/api/player/%24id.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L4-L5
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

Building a custom audio player isn’t the easiest task, but it can produce great results, as
we’ll find out shortly. The key is to use semantically appropriate elements wherever
possible (and ARIA attributes when necessary), and getting to know the
HTMLMediaElement interface as intimately as possible.

Let’s start with the markup for our custom audio player. The entire component is
wrapped in a figure element to indicate that the content inside it is self contained. Next,
we add a button to toggle the playback of our audio track (note the ARIA attributes
used to semantically relate this button to our audio element). Finally, we render some
markup for the track’s metadata and album art, and — especially important — a range
input to indicate and modify the track’s playback position. Since this input controls audio
playback, we use an appropriate ARIA attribute here, too.

Now that we’ve got our required markup, it’s time to dive into interactivity with Web

Components and the HTMLMediaElement interface. The script tag which contains this
functionality is a little gnarly, but we’ll walk through the most important points (and for
the moment, we’ll bypass the portions of this script concerned with our waveform UI).

First, take note of AudioPlayer class’s instance properties; we’ll be using these to refer
to and modify certain aspects of our audio player. Next, note that we’re creating a new
instance of our audio element programmatically. We do this instead of declaring an
audio element with HTML because we need to attach event listeners to this element, and
by the time this JavaScript executes on the client, some of those events may already have
been fired by the browser before we can attach those listeners. (Yes, you read that right:
we actually need to account for the fact that JavaScript is slower than HTML to get this
right.)

Next, we add an absolute ton of event listeners to our playback button, audio element,
and our timeline (AKA our range input). This will allow us to use these events to trigger
the expected behavior from our audio player. We’ll get to the specifics of these
momentarily.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L69-L110
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/figure
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L88-L97
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L98-L109
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L98-L109
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L105
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L105
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L115-L250
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L115-L250
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L146-L152
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L156-L162
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L156-L162
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L164-L172
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

At last, we get to render some content! Once all our setup is complete, we use a few
DOM methods to hide the system audio player, insert our programmatically created audio
element, and reveal our custom audio markup, which was previously hidden from view. In
combination with our custom element styles (which are handily scoped to our custom
element by Enhance), we now have a custom audio player ready to be interacted with.

Let’s go over each of these interactions in a little more detail.

Playing and pausing

This one’s pretty straightforward. Our playback button fires the onPlayPause function
when clicked. This function plays or pauses the audio track, depending on whether it’s
currently paused or not.

Then, because we registered event listeners for the play and pause events on the
audio element itself, our playback button’s aria-pressed attribute will be updated
accordingly by the onPlay and onPause functions. These attributes inform the user of
the button’s current state, and cause the proper icon within the button to be displayed.

Updating the current time display

Every time the audio track’s currentTime property updates (usually a few times per
second, depending on the client), our onTimeUpdate function is fired. This function is
responsible for updating both the value of our timeline element (the range input) and the
inner text of our custom audio player’s current time stamp.

https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L174-L177
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L16-L62
https://enhance.dev/docs/learn/concepts/styling/enhance-styles/element-styles
https://enhance.dev/docs/learn/concepts/styling/enhance-styles/element-styles
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L201-L203
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L167-L168
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L205-L211
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L45-L51
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L213-L221
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

Adjusting the playback position

Here’s where things get a little more nuanced.

Along with indicating the audio track’s current playback position, we also want our
timeline element to be interactive, allowing users to seek to a specific playback position
within the audio track. This is why we used the HTML range input element for our
timeline: it’s both illustrative (as we saw in the previous section) and modifiable.

When users interact with HTML range inputs, developers can be notified of changes to its
value at two different stages: first, input.oninput , which occurs while the input is being
modified (i.e., the user is actively dragging or otherwise manipulating the input); and
second, input.onchange , which occurs when the user finally commits a particular value
(i.e., when the user disengages the range input). This is important to know, as we need to
handle each event differently.

To begin, let’s examine our onTimelineInput function, which fires every time the input
is manipulated. Because we’re keeping our timeline’s value in sync with the audio track’s
currentTime property, we first need to remove the event listener responsible for doing
so — otherwise, the user’s interaction would be cut short by the audio track continuing to
update the input’s value in the background. By removing that event listener, we can
give the user full control of the input’s value (and position).

Next, as the user continues to update the timeline’s value, we use that value (provided by
the event.target.value property) to set the UI’s current time stamp, in order to
indicate this position in time to the user.

Eventually, the user will commit a value to the range input — this is where our
onTimelineChange function takes over. In this function, we first assign the chosen
value to both our timeline input and the audio track’s currentTime property. Then, in
order for the timeline to resume staying in sync with the audio track’s playback position,
we reregister our event listener and callback.

Whew! It’s a bit of a whirlwind, but with this code in place, we now have a fully interactive
custom audio player!

0:00

https://begin.com/blog/posts/(https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/input_event)
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/change_event
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L223-L233
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L225-L227
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L229-L232
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L235-L243
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L237-L239
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L237-L239
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L241-L242
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

At this point in developing Enhance Music, we were pretty happy with our results. We had
a navigable music library with a persistent audio player, and a bunch of great progressive
enhancements to make things look and feel smooth via JavaScript (when available).

But then we got a little greedy and decided to add another bell and whistle or two.

Final enhancements

As I mentioned earlier, there are a lot of presumptions out there about what can and
cannot be accomplished in terms of UI without resorting to pulling in JavaScript libraries
like React. This especially extends to creating rich, dynamic visual effects and data
visualizations. We wanted to take this opportunity to demonstrate that web standards are
fully up to this task — and that using them to do so can actually be pretty straightforward!

A common visualization we see on a lot of audio player interfaces is a representation of
the current audio track’s waveform. We thought it would be awesome to do something
like this with Enhance Music to provide a little more information about the current track’s
content and dynamics, as well as to satisfy our cravings for a little razzle dazzle.

I mentioned avoiding the propensity to resort to NPM as a first response earlier, but that
doesn’t mean we should ignore the value of NPM entirely. At this point, not wanting to
invest the time required to learn how to derive a waveform graphic from an audio file from
scratch, we finally headed over to NPM to see what sort of libraries might be available to
help us out with this. That’s where we found Wavesurfer.js, an open source JavaScript
library for generating and customizing waveforms, with support for HTML5 Audio and
Web Audio. With an easy to follow interface and a mere 43kb addition to our site’s
payload, this was a perfect solution for our needs.

Waveform.js uses the Canvas API to generate its graphics, so after a bit of poking around
through various docs on MDN to learn about canvas gradients, I was able to come up with
a couple of custom gradients to use as the fill for our custom waveform. Applying that
gradient to our Wavesurfer instance and adding further customizations was a piece of
cake. So, too, was syncing the Wavesurfer instance up with our audio track’s

0:00

https://www.google.com/search?sca_esv=568226998&q=waveform&tbm=isch&source=lnms&sa=X&ved=2ahUKEwja4r2_lsaBAxXfjokEHRbEDDwQ0pQJegQIDRAB&biw=1783&bih=1136&dpr=2
https://wavesurfer-js.org/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L119-L137
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L181-L191
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L220
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

progress, which provided us with even more flair for our custom audio player. With this in
place (and using a little CSS filtering on our audio player), we arrived at a gorgeous
visualization of our audio track, layered beneath our custom audio player.

We decided to add one more piece of progressive enhancement to Enhance Music at this
point: hiding the audio player iframe when a track hasn’t been loaded. The empty audio
player iframe taking up room on our layout when there was no content to show wasn’t
ideal, but it took just a sprinkling of JavaScript to hide the iframe once our script loads,
and to then listen for load events on it to show the iframe once an audio track has been
selected. No sweat!

Our final investigation for Enhance Music’s UI focused on view transitions. This worked
well when testing our library view in isolation (and you can see it in action here, using
Chrome Canary), but upon verifying this in the app itself, we realized that view transitions
are not yet supported in iframes. Given that this spec is still so early in its rollout, that’s
pretty understandable; we even got a bug filed in Chromium to track this. Once the spec
rolls out though, this simple addition to our album cover element should have view
transitions working smoothly, which should help to make navigation through the library
even more seamless.

A fully functional music library, backed by great performance

Not only is Enhance Music a great example of a fully functional interactive app built
entirely with web standards, it also performs exceptionally well: as in, ‘all 100s on
PageSpeed Insights’.

But honestly, getting the performance to this point mostly just happened on its own. We

formatted our album covers as .webp images and sized them appropriately, and we kept
bundle sizes in mind when looking for waveform libraries on NPM, but otherwise, the
strategy here could be summed up as: ‘Use the platform.’

By relying on HTML, CSS, and the smallest amount of JavaScript necessary, achieving
great performance becomes almost a matter of course. This isn’t to say that no thinking

0:00

https://github.com/enhance-dev/enhance-music/blob/main/app/elements/audio-player.mjs#L220
https://github.com/enhance-dev/enhance-music/blob/main/app/browser/player-visibility.mjs
https://daverupert.com/2023/05/getting-started-view-transitions/
https://enhance-music.com/library
https://enhance-music.com/library
https://bugs.chromium.org/p/chromium/issues/detail?id=1481881
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-cover.mjs#L25
https://pagespeed.web.dev/analysis/https-enhance-music-com/ji19jdzrkn?form_factor=mobile
https://pagespeed.web.dev/analysis/https-enhance-music-com/ji19jdzrkn?form_factor=mobile
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

had to be done at all — after all, Enhance is built from the ground up with performance in
mind, and we did spend a bit of time researching appropriate ARIA attributes for our
custom audio player — but rather that by working with the grain of the platform instead
of ejecting into JS frameworks, transpilers, and other overheads, one learns to build
performantly (and accessibly) from the start, rather than trying to make performance and
accessibility happen in the ‘polishing’ stage (which seldom works anyway). This is as true
for authoring simple static sites as it is for rich interactive web apps — and I think Enhance
Music demonstrates this quite well!

Summing up: on the longevity of web standards

Working on Enhance Music over these past weeks reminded me of the last time I worked
on a web project involving an audio player. I was building a module for a pretty intense
React application — a series of learning activities for English students, which required a
custom audio player to play back pieces of dialogue or other spoken materials. While both
that audio player and the audio player for Enhance Music were built on top of the
HTMLMediaElement interface, the former was necessarily interlaced with React specific
implementation details — details that involved time, problem solving, and results that I will
never be able to transfer to another project or component. Even if I were to build that
audio player in React again today, I’m confident that at least some of the React specific
details would have to change to be compliant with the current version of React. The audio
player for Enhance Music, meanwhile — being built solely with web standards — has
given me knowledge and tools that I will be able to bring with me as long as the web
platform itself exists. That’s pretty powerful.

This isn’t meant to disparage React, or any other JavaScript view framework. For me, this
instead highlights the incredible benefits of learning and building with web standards: your
code — and more importantly, the knowledge you acquire while writing it — remains
portable forever. HTML, CSS, and JavaScript are fully backwards and forwards
compatible, and modern web browsers are too. The knowledge I’ve picked up building
Enhance Music will remain useful and applicable for as long as I’m writing code for the
web, which will allow me to focus on critical problem solving in the future, rather than
relearning problem solving strategies I’ve already internalized. In today’s fast paced web
ecosystem, that’s a huge advantage — and, frankly, a relief.

Not only does this knowledge remain useful, but the results speak for themselves:
Enhance Music delivers exceptional performance, a beautiful multimodal interface, and is

https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

© 2022-2023 Beginner Corp.

Made with 💖

in California

even ready for future web features like view transitions in iframes (presuming the spec
doesn’t change — which, to be fair, it could… but that’s okay).

I hope this deep dive through Enhance Music has been as enjoyable to read as it was to
create the project itself, and I hope it’s given you some ideas for your next project! Please
feel free to explore the source code and borrow whatever pieces of it might be useful
to you.

And if you’re excited about what can be done with Enhance, be sure to check out the
Enhance website and docs, or join us on Discord to ask questions or share your ideas.

See you next time!

1.Note that we don’t write aria-current='false' to our track li s’ markup by default. If we did this,
screenreader users who don’t have our JavaScript available would be told that none of the tracks are the
‘current’ track, even after selecting one for playback, which would be confusing to say the least. For this
reason, we only include aria-current='false' attributes when updating all of the tracks via JavaScript.
↩

2. Because a click event might occur on an element nested within the track’s li element, we use the
closest function to get to the li ’s dataset from the event’s target . ↩

3. For more on dynamic routes and path parameters, see the Enhance docs. ↩

4. First, the autoplay attribute we’ve used on the audio element won’t work the first time an audio track
is loaded in Safari. WebKit exerts much stricter controls over this attribute than other browsers, so you’ll
need to play the first track you request manually if you’re exploring Enhance Music in Safari (this will also
apply to our custom audio player). Unfortunately, if you have JavaScript disabled, none of this will matter:

Safari itself seems to require JavaScript in order to play back audio files, which is quite a vibe. Attempting

to play audio files with Safari’s ‘Disable JavaScript’ option enabled completely prevented audio files from
playing at all in our testing, even when requesting the file directly from the Network inspector. Turn
JavaScript on, and presto: Safari will gladly play that same audio file! You can’t say we didn’t try. ↩

https://github.com/enhance-dev/enhance-music/
https://enhance.dev/
https://enhance.dev/
https://enhance.dev/discord
https://developer.mozilla.org/en-US/docs/Web/API/Element/closest
https://developer.mozilla.org/en-US/docs/Web/API/Element/closest
https://github.com/enhance-dev/enhance-music/blob/main/app/elements/album-data.mjs#L128
https://enhance.dev/docs/learn/concepts/routing/dynamic-routes
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/
https://begin.com/

