
vb-consulting / blog Public

A Different Type of SQL Recursion with PostgreSQL #1
vbilopav started this conversation in PostgreSQL

Code Pull requests Discussions Actions Security Insights

vbilopav 12 hours ago Maintainer

A Different Type of SQL Recursion with PostgreSQL

PostgreSQL offers a powerful procedural programming model out of the box (in addition to the standard SQL).

You can combine that with the standard SQL approach to overcome almost any issue and solve any programming task.
Sometimes, the good old procedural approach may be a more straightforward way out of the complex data problems
than standard SQL.

This article will try to demonstrate that approach to a complex problem example.

The Problem

Let's say we want to write a function that will return all related tables for a table name in a parameter.

We will start with a made-up schema:

edited

create table division_status (

    division_status_id int primary key, 

    name text

);

create table department_status (

    department_status_id int primary key, 

    name text

);

create table divisions (

    division_id int primary key, 

    name text, 

    owner_user_id int,

    parent_division_id int,

    division_status_id int

);

create table departments (

    department_id int primary key, 

    name text, 

    owner_user_id int,

    parent_department_id int,

https://github.com/vb-consulting
https://github.com/vb-consulting/blog
https://github.com/vb-consulting/blog/discussions/categories/postgresql
https://github.com/vbilopav
https://github.com/vb-consulting/blog
https://github.com/vb-consulting/blog/pulls
https://github.com/vb-consulting/blog/discussions
https://github.com/vb-consulting/blog/actions
https://github.com/vb-consulting/blog/security
https://github.com/vb-consulting/blog/pulse
https://github.com/vbilopav


As we can see, we have the following tables:

users  - references itself ( users ) and table departments

departments  references itself, table users , table divisions , and table department_status .

divisions  references itself, table users  and table division_status .

So, what we want to achieve is to have a function that will return all related tables directly and indirectly, together with the
level of relation.

For example, we want to be able to call a function select_foreign_tables  for table users  as a parameter, like this:

This should return the following result:

table_schema table_name fk_table_schema fk_table_name level

public users public departments 1

public users public users 1

public departments public divisions 2

public departments public department_status 2

public departments public users 2

public departments public departments 2

public divisions public divisions 3

public divisions public users 3

    division_id int,

    department_status_id int

);

create table users (

    user_id int primary key, 

    name text, 

    owner_user_id int, 

    department_id int

);

alter table users add foreign key (department_id) references departments (department_id);

alter table users add foreign key (owner_user_id) references users (user_id);

alter table departments add foreign key (owner_user_id) references users (user_id);

alter table departments add foreign key (parent_department_id) references departments (department_id);

alter table departments add foreign key (division_id) references divisions (division_id);

alter table departments add foreign key (department_status_id) references department_status (department

alter table divisions add foreign key (owner_user_id) references users (user_id);

alter table divisions add foreign key (parent_division_id) references divisions (division_id);

alter table divisions add foreign key (division_status_id) references division_status (division_status_

select * from select_foreign_tables('public', 'users');



table_schema table_name fk_table_schema fk_table_name level

public divisions public division_status 3

As we can see, each row should also have a level assigned. For example, if table users  directly references table

departments , that's level 1. But, department_status  is level 2 because users  references departments  and

departments references department_status , and so on...

Simple, right? It is just another data-related task. Now, how would we do that?

Let's start with a basic query.

Basic Query

A basic query is the PostgreSQL system query that will query system tables to fetch information about direct references.
It's a rather complicated query, and I won't get into it, but for the sake of simplicity, let's create a view out of it:

Fine, it's ugly and dirty; don't even look at it.

Use it as a view, for example:

This will return first-level references for the table users :

create view fk_tables as

select 

    con.schema as table_schema,

    cl2.relname as table_name,

    ns.nspname as fk_table_schema,

    cl.relname as fk_table_name

from

    (select 

        unnest(con1.conkey) as parent, 

        unnest(con1.confkey) as child, 

        con1.confrelid, 

        con1.conrelid,

        con1.contype,

        ns.nspname as schema

    from 

        pg_class cl

        inner join pg_namespace ns on cl.relnamespace = ns.oid

        inner join pg_constraint con1 on con1.conrelid = cl.oid

    ) con

    inner join pg_attribute att on att.attrelid = con.confrelid and att.attnum = con.child

    inner join pg_class cl on cl.oid = con.confrelid

    inner join pg_attribute att2 on att2.attrelid = con.conrelid and att2.attnum = con.parent

    inner join pg_class cl2 on cl2.oid = att2.attrelid

    inner join pg_namespace ns on cl.relnamespace = ns.oid;

comment on view fk_tables is 'Retuls list of all tables and join related tables for each table.';

select * from fk_tables where table_schema = 'public' and table_name = 'users';



table_schema table_name fk_table_schema fk_table_name

public users public departments

public users public users

Now, all we have to do is run the same query again for each of these FK tables in this results, and we're done.

That's why it's called recursion.

Solution 1

Luckily for us, PostgreSQL has recursive common-table queries as a standard feature, and we can do the first solution
with that.

For a recursion seed, we can use the filter on our fk_tables  view.

In the recursive part, we can return the FK table as the base table and join the fk_tables  view again to get the real FK

tables like this:

All together, it should look like this:

select

    t.table_schema,

    t.table_name,

    t.fk_table_schema,

    t.fk_table_name

from

    fk_tables t

where 

    t.table_schema = 'public'

    and t.table_name = 'users'

    select

        rec.fk_table_schema as table_schema,

        rec.fk_table_name as table_name,

        t.fk_table_schema,

        t.fk_table_name

    from

        _recursive_cte rec

        inner join fk_tables t on

            rec.fk_table_schema = t.table_schema 

            and rec.fk_table_name = t.table_name   

with recursive _recursive_cte as 

(

    select

        t.table_schema,

        t.table_name,

        t.fk_table_schema,

        t.fk_table_name

    from

https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-RECURSIVE


Confusing? We have yet to start with the confusing part.

Anyway, this query will return all FK tables for users  at all levels:

table_schema table_name fk_table_schema fk_table_name

public users public departments

public users public users

public departments public users

public departments public departments

public departments public divisions

public departments public department_status

public divisions public users

public divisions public divisions

public divisions public division_status

However, we still need levels. We can count it manually, but we'd rather have instead the database engine do it.

First naive try it to add level 1 at recursion seed like this:

        fk_tables t

    where 

        t.table_schema = 'public'

        and t.table_name = 'users'

    

    union 

    select

        rec.fk_table_schema as table_schema,

        rec.fk_table_name as table_name,

        t.fk_table_schema,

        t.fk_table_name

    from

        _recursive_cte rec

        inner join fk_tables t on

            rec.fk_table_schema = t.table_schema 

            and rec.fk_table_name = t.table_name    

)

select

    table_schema,   

    table_name,

    fk_table_schema, 

    fk_table_name

from

    _recursive_cte

select

    t.table_schema,

    t.table_name,



And have it increased by one in each recursion step:

This is very naive. We have a union  of seed query and recursion query. The union  operator filters out duplicate

records by default. From the moment we've introduced a level number that is unique, duplicates won't be filtered out. And
since users  references departments  and departments  references users  again, the query will end up in an infinite

loop, which potentially could crash the server.

So this is reckless and even dangerous.

What we have here is a very well-known data problem - the gap and islands problem.

What we want to do is this:

keep the sort order and

on each change in table_schema  and table_name  - increase the counter by one.

To be able to do this, we first need to add two more calculated fields:

Row number - we will use this just to keep the sort order.

Calculated field that is 1 when the table in a row changed from the previous row. Otherwise, it is 0.

Here is what it looks like:

    t.fk_table_schema,

    t.fk_table_name,

    1 as level

from

    fk_tables t

where 

    t.table_schema = 'public'

    and t.table_name = 'users'

select

    rec.fk_table_schema as table_schema,

    rec.fk_table_name as table_name,

    t.fk_table_schema,

    t.fk_table_name,

    rec.level + 1 as level

from

    _recursive_cte rec

    inner join fk_tables t on

        rec.fk_table_schema = t.table_schema 

        and rec.fk_table_name = t.table_name  

select

    table_schema,   

    table_name,

    fk_table_schema, 

    fk_table_name,

    row_number() over(),

    case 

        when lag(table_schema) over() = table_schema and lag(table_name) over() = table_name 

        then 0



We can wrap this into another CTE and do the last calculation in the final query:

Field island_flips  will be one if the previous table is different; otherwise, it is 0. Now, if we do a cumulative sum over

those values with sum(island_flips) over (order by row_number) as level  - we will get the correct levels.

Here is the final version of the plain SQL function:

        else 1

    end as island_flips

from

    _recursive_cte

select

    table_schema,   

    table_name,

    fk_table_schema, 

    fk_table_name,

    island_flips,

    sum(island_flips) over (order by row_number) as level

from

    _cte

order by 

    row_number

create or replace function select_foreign_tables(

    _table_schema text,

    _table_name text

)

returns table (

    table_schema text,

    table_name text,

    fk_table_schema text,

    fk_table_name text,

    level int

)

language sql

as 

$$

with recursive _recursive_cte as 

(

    select

        t.table_schema,

        t.table_name,

        t.fk_table_schema,

        t.fk_table_name

    from

        fk_tables t

    where 

        t.table_schema = _table_schema

        and t.table_name = _table_name

    

    union 

    select

        rec.fk_table_schema as table_schema,

        rec.fk_table_name as table_name,



Do you think this sounds complicated?

It sounds complicated because it is.

Let's try to solve this problem with a completely different approach.

Solution 2

In this approach, we will use an old-school procedural programming approach - instead of using the recursive SQL query
- we will use a normal function recursion as you would with any other language.

So, instead of creating a function of the sql  type - this new function will be of the plpgsql  type. This allows us to use
procedural extensions like "if branching", "loops" and so on... Those are the concepts most developers are familiar with.

The idea is to create a temporary table that we will insert in recursive calls and return values from that temporary table on
the last call.

The function skeleton will look like this:

        t.fk_table_schema,

        t.fk_table_name

    from

        _recursive_cte rec

        inner join fk_tables t on

            rec.fk_table_schema = t.table_schema 

            and rec.fk_table_name = t.table_name    

    

), _cte as (

    

    select

        table_schema,   

        table_name,

        fk_table_schema, 

        fk_table_name,

        row_number() over(),

        case 

            when lag(table_schema) over() = table_schema and lag(table_name) over() = table_name 

            then 0

            else 1

        end as island_flips

    from

        _recursive_cte

)

select

    table_schema,   

    table_name,

    fk_table_schema, 

    fk_table_name,

    sum(island_flips) over (order by row_number) as level

from

    _cte

order by 

    row_number

$$;



What we first need to do is to create a temporary table:

create or replace function select_foreign_tables2(

    _table_schema text,

    _table_name text,

    _level int = 1

)

returns table (

    table_schema text,

    table_name text,

    fk_table_schema text,

    fk_table_name text,

    level int

)

language plpgsql

as 

$$

begin

    create temp table if not exists _result (

        table_schema text,

        table_name text,

        fk_table_schema text,

        fk_table_name text,

        level int

    ) on commit drop;

    if exists(

        select 1 from _result t where t.table_schema = _table_schema and t.table_name = _table_name

    ) then

        return;

    end if;

    -- 

    -- Insert  _result table in a loop with recursive calls here

    --    

    return query 

    select 

        t.table_schema, 

        t.table_name,

        t.fk_table_schema, 

        t.fk_table_name,

        t.level

    from 

        _result t;

end;

$$;

create temp table if not exists _result (

    table_schema text,

    table_name text,

    fk_table_schema text,

    fk_table_name text,

    level int

) on commit drop;



This table will be automatically dropped when transaction commits (or rollbacks). All PostgreSQL functions in procedural
language are in transaction by default (notice begin  and end ).

When we call this function again in a recursion - it will still be the same transaction. The new transaction is merged into
the existing transaction (PostgreSQL doesn't support nested transactions, as far as I know).

However, since it will be called recursively, that temp table may already exist. That's why we also need to check if it exists
create temp table if not exists .

Next, we must check did we went trough this step already. Meaning, have we processed that table from parameters. If
we have, exit immediately:

And now, we are ready to insert the data:

Loop through the fk_tables  view for table parameters and for each record:

Insert into the result.

Call recursively the same function again but, use fk_table_schema  and fk_table_name  as parameters and

increase one level.

Here is what that loop looks like:

if exists(

    select 1 from _result t where t.table_schema = _table_schema and t.table_name = _table_name

) then

    return;

end if;

for _row in (

    select

        t.table_schema,

        t.table_name,

        t.fk_table_schema,

        t.fk_table_name

    from

        fk_tables t

    where 

        t.table_schema = _table_schema

        and t.table_name = _table_name

) loop

    insert into _result

    select 

        _row.table_schema, 

        _row.table_name,

        _row.fk_table_schema, 

        _row.fk_table_name,

        _level;

    perform sys.select_foreign_tables2(

        _row.fk_table_schema, 

        _row.fk_table_name, 

        _level + 1

    );



And finally, the entire function:

end loop;

create or replace function select_foreign_tables2(

    _table_schema text,

    _table_name text,

    _level int = 1

)

returns table (

    table_schema text,

    table_name text,

    fk_table_schema text,

    fk_table_name text,

    level int

)

language plpgsql

as 

$$

declare 

    _row record;

begin

    create temp table if not exists _result (

        table_schema text,

        table_name text,

        fk_table_schema text,

        fk_table_name text,

        level int

    ) on commit drop;

    if exists(

        select 1 from _result t where t.table_schema = _table_schema and t.table_name = _table_name

    ) then

        return;

    end if;

    for _row in (

        select

            t.table_schema,

            t.table_name,

            t.fk_table_schema,

            t.fk_table_name

        from

            fk_tables t

        where 

            t.table_schema = _table_schema

            and t.table_name = _table_name

    ) loop

        insert into _result

        select 

            _row.table_schema, 

            _row.table_name,

            _row.fk_table_schema, 

            _row.fk_table_name,

            _level;

        perform sys.select_foreign_tables2(



1 comment

Conclusion

Which of these two approaches is better, in your opinion?

Recursive CTE queries are powerful but confusing and limiting. This old-school procedural programming approach may
be a much better fit for developers untrained with SQL, and that is, in my opinion, the majority. On the other hand, the
procedural approach may be something most developers feel comfortable with.

Leave comments below.

            _row.fk_table_schema, 

            _row.fk_table_name, 

            _level + 1

        );

    end loop;

    return query 

    select 

        t.table_schema, 

        t.table_name,

        t.fk_table_schema, 

        t.fk_table_name,

        t.level

    from 

        _result t;

end;

$$;

1

Oldest Newest Top

https://github.com/vb-consulting/blog/discussions/1?sort=old
https://github.com/vb-consulting/blog/discussions/1?sort=new
https://github.com/vb-consulting/blog/discussions/1?sort=top


Category

PostgreSQL

Labels

postgresql programming advanced

2 participants

duki994 4 hours ago

Given the amount of effort and the way recursion is implemented in solution 2, I'd go for solution 2. It's more elegant and
more C language-like and more in-line HW would execute recursion (mechanical sympathy).

Though solution 1 is ok, and it's not that convoluted and complex, it's overcomplicated for a simple requirement like this.

It just shows how algebra and lambda calculus theory (procedural, functional and OOP paradigms) can solve some
problems in a way more elegant way than set theory (SQL-like DBs and Codd's relational model).

All major DB vendors have procedural extensions and languages associated with them:
T-SQL (MSSQL), plpgsql (PostgreSQL), PL/SQL (Oracle) etc.

Just use them. Portability is not an issue when having similar Turing complete procedural language SQL extensions.

0 replies2

https://github.com/vb-consulting/blog/discussions/categories/postgresql
https://github.com/vb-consulting/blog/discussions?discussions_q=label%3Apostgresql
https://github.com/vb-consulting/blog/discussions?discussions_q=label%3Aprogramming
https://github.com/vb-consulting/blog/discussions?discussions_q=label%3Aadvanced
https://github.com/vbilopav
https://github.com/duki994
https://github.com/duki994

