
F# for Fun and Profit

Part of the "The Return of the EDFH" series (link)

Generating interesting inputs

for property-based testing
And how to classify them

15 Feb 2021

In the previous post we attempted to define some properties for a run-length encoding
(RLE) implementation, but got stuck because the random values being generated by
FsCheck were not very useful.

In this post we’ll look at a couple of ways of generating “interesting” inputs, and how
to observe them so that we can be sure that they are indeed interesting.

Observing the generated data

The first thing we should do is add some kind of monitoring to see how many of the
inputs are interesting.

So what is an “interesting” input? For this scenario, it’s a string that has some runs in
it. Which means that a string consisting of random characters like this…

%q6,NDUwm9~ 8I?a-ruc(@6Gi_+pT;1SdZ|H

…is not very interesting as input for an RLE implementation.

Without trying to reimplement the RLE logic, one way to determine whether there are
runs is to see if the number of distinct characters is much less than the length of the
string. If this is true, then by the pigeonhole principle there must be duplicates of some
character. This doesn’t ensure that there are runs, but if we make the difference large
enough, most of the “interesting” inputs will have runs.

So here’s the definition of our isInterestingString function:

let isInterestingString inputStr =

 if System.String.IsNullOrEmpty inputStr then

 false

https://fsharpforfunandprofit.com/
https://fsharpforfunandprofit.com/posts/return-of-the-edfh
https://en.wikipedia.org/wiki/Pigeonhole_principle

 else

 let distinctChars =

 inputStr

 |> Seq.countBy id

 |> Seq.length

 distinctChars <= (inputStr.Length / 2)

And if we test it, we can see that it works pretty well.

isInterestingString "" //=> false

isInterestingString "aa" //=> true

isInterestingString "abc" //=> false

isInterestingString "aabbccc" //=> true

isInterestingString "aabaaac" //=> true

isInterestingString "abcabc" //=> true (but no runs)

To monitor whether an input is interesting, we will use the FsCheck function
Prop.classify .

Prop.classify is just one of a number of functions for working with
properties. More on properties at the FsCheck documentation. Or check out the
complete API.

To test all this, let’s create a dummy property propIsInterestingString which we
can use to monitor the input generated by FsCheck. The actual property test itself
should always succeed, so we’ll just use true . Here’s the code:

let propIsInterestingString input =

 let isInterestingInput = isInterestingString input

 true // we don't care about the actual test

 |> Prop.classify (not isInterestingInput) "not interesting"

 |> Prop.classify isInterestingInput "interesting"

And now let’s check it:

FsCheck.Check.Quick propIsInterestingString

// Ok, passed 100 tests (100% not interesting).

We find that 100% of the inputs are not interesting. So we need to make better inputs!

Generating interesting strings, part 1

https://fscheck.github.io/FsCheck//Properties.html
https://fscheck.github.io/FsCheck/reference/fscheck-prop.html

One way to do this is to use a filter to remove all strings that are not interesting. But
that would be horrendously inefficient, as interesting strings are extremely rare.

Instead, let’s generate interesting strings. For our first attempt, we’ll start with
something very simple: we will generate a list of 'a' characters and a list of 'b'
characters, and then concatenate the two lists, giving us some nice runs.

In order to do this, we will build our own generator (see earlier discussion of
generators and shrinkers). FsCheck provides a useful set of functions for making
generators, such as Gen.constant to generate a constant, Gen.choose to pick a
random number from an interval, and Gen.elements to pick a random element from
a list. Once you have a basic generator, you can map and filter its output, and
also combine multiple generators with map2 , oneOf , etc.

For more on working with generators, see the FsCheck documentation.

Overview of using generators
The generator API

So, here’s our code using the generators:

let arbTwoCharString =

 // helper function to create strings from a list of chars

 let listToString chars =

 chars |> List.toArray |> System.String

 // random lists of 'a's and 'b's

 let genListA = Gen.constant 'a' |> Gen.listOf

 let genListB = Gen.constant 'b' |> Gen.listOf

 (genListA,genListB)

 ||> Gen.map2 (fun listA listB -> listA @ listB)

 |> Gen.map listToString

 |> Arb.fromGen

We generate a list of 'a' characters and list of 'b' characters, then use map2 to
concatenate them, and then convert the resulting list into a string. As the very last step,
we build an Arbitrary from the generator, which is what we will need for the
testing phase. We’re not providing a custom shrinker right now.

Next, let’s sample some random strings from our new generator to see what they look
like:

https://fsharpforfunandprofit.com/posts/property-based-testing-1
https://fscheck.github.io/FsCheck//TestData.html
https://fscheck.github.io/FsCheck/reference/fscheck-gen.html

arbTwoCharString.Generator |> Gen.sample 10 10

(*

["aaabbbbbbb"; "aaaaaaaaabb"; "b"; "abbbbbbbbbb";

 "aaabbbb"; "bbbbbb"; "aaaaaaaabbbbbbb";

 "a"; "aabbbb"; "aaaaabbbbbbbbb"]

*)

That looks pretty good. Most of the strings have runs, just as we want.

Now we can apply this generator to the propIsInterestingString property we
created earlier. We will use Prop.forAll to construct a new property using the
custom generator, and then test the new property with Check.Quick in the usual
way.

// make a new property from the old one, with input from our

generator

let prop = Prop.forAll arbTwoCharString propIsInterestingString

// check it

Check.Quick prop

(*

Ok, passed 100 tests.

97% interesting.

3% not interesting.

*)

And this output is much better! Almost all the inputs are interesting.

Generating interesting strings, part 2

The strings we’re generating have at most two runs, which is not very representative
of the real strings that we want to run-length encode. We could enhance our generator
to include multiple lists of characters, but it gets a little complicated, so let’s approach
this problem from a completely different direction.

One of the most common uses for run-length encoding is to compress images. We can
think of a monochrome image as an array of 0s and 1s, with 1 representing a black
pixel. Now let’s consider an image with only a few black pixels, which in turn means
lots of long runs of white pixels, perfect as input for our tests.

How can we generate such “images”? How about starting with an array of white pixels
and randomly flipping some of them to black?

First we need a helper function to randomly flip “bits” in a string:

let flipRandomBits (str:string) = gen {

 // convert input to a mutable array

 let arr = str |> Seq.toArray

 // get a random subset of pixels

 let max = str.Length - 1

 let! indices = Gen.subListOf [0..max]

 // flip them

 for i in indices do arr.[i] <- '1'

 // convert back to a string

 return (System.String arr)

 }

and then we can construct a generator:

let arbPixels =

 gen {

 // randomly choose a length up to 50,

 // and set all pixels to 0

 let! pixelCount = Gen.choose(1,50)

 let image1 = String.replicate pixelCount "0"

 // then flip some pixels

 let! image2 = flipRandomBits image1

 return image2

 }

 |> Arb.fromGen // create a new Arb from the generator

Now let’s sample the generator:

arbPixels.Generator |> Gen.sample 10 10

(*

"0001001000000000010010010000000";

"00100";

"0001111011111011110000011111";

"0101101101111111011010";

"10000010001011000001000001000001101000100100100000";

"0000000000001000";

"00010100000101000001010000100100001010000010100";

"000";

"0000110101001010010";

"11100000001100011000000000000000001"

*)

Looks good – only one of the strings does not have a run in it. We always want to have
a few empty strings and strings without runs in our sample, to check the edge cases.

We can now try the propIsInterestingString property with this new generator.

// make a new property from the old one, with input from our

generator

let prop = Prop.forAll arbPixels propIsInterestingString

// check it

Check.Quick prop

(*

Ok, passed 100 tests.

94% interesting.

6% not interesting.

*)

And again, we get a useful result of 94% interesting strings.

Time to test the properties against the

EDFH

Now that we have a reliable way of generating strings, we can revisit the properties
from the previous post and see if the EDFH’s implementations pass.

As a reminder, for a correct RLE implementation, here are the properties that we came
up with:

The output must contain all the characters from the input
Two adjacent characters in the output cannot be the same
The sum of the run lengths in the output must equal the total length of the input
If the input is reversed, the output must also be reversed

And here is the code for each one:

Prop #1: The output must contain all the characters from the input

// A RLE implementation has this signature

https://fsharpforfunandprofit.com/posts/return-of-the-edfh

type RleImpl = string -> (char*int) list

let propUsesAllCharacters (impl:RleImpl) inputStr =

 let output = impl inputStr

 let expected =

 if System.String.IsNullOrEmpty inputStr then

 []

 else

 inputStr

 |> Seq.distinct

 |> Seq.toList

 let actual =

 output

 |> Seq.map fst

 |> Seq.distinct

 |> Seq.toList

 expected = actual

Note: As implemented, this property is actually stronger then “contains all the
characters from the input”. If we wanted that, we should convert expected and
actual into unordered sets before comparing them. But because we are leaving them

as lists, the property as implemented is actually “contains all the characters from the
input and in the same order”.

Prop #2: Two adjacent characters in the output cannot be the same

let propAdjacentCharactersAreNotSame (impl:RleImpl) inputStr =

 let output = impl inputStr

 let actual =

 output

 |> Seq.map fst

 |> Seq.toList

 let expected =

 actual

 |> removeDupAdjacentChars // should have no effect

 expected = actual // should be the same

Reminder: The removeDupAdjacentChars function in this code was defined in the
previous post.

Prop #3: The sum of the run lengths in the output must equal the length of the
input

let propRunLengthSum_eq_inputLength (impl:RleImpl) inputStr =

 let output = impl inputStr

https://fsharpforfunandprofit.com/posts/return-of-the-edfh/#the-adjacent-characters-are-not-the-same-property

 let expected = inputStr.Length

 let actual = output |> List.sumBy snd

 expected = actual // should be the same

Here, we simply sum the second part of each (char,run-length) tuple.

Prop #4: If the input is reversed, the output must also be reversed

/// Helper to reverse strings

let strRev (str:string) =

 str

 |> Seq.rev

 |> Seq.toArray

 |> System.String

let propInputReversed_implies_outputReversed (impl:RleImpl)

inputStr =

 // original

 let output1 =

 inputStr |> impl

 // reversed

 let output2 =

 inputStr |> strRev |> impl

 List.rev output1 = output2 // should be the same

Combining the properties

Finally we can combine all four properties into a single compound property. Each of
the four sub-properties is given a label with @| so that when the compound property
fails, we know which sub-property caused the failure.

let propRle (impl:RleImpl) inputStr =

 let prop1 =

 propUsesAllCharacters impl inputStr

 |@ "propUsesAllCharacters"

 let prop2 =

 propAdjacentCharactersAreNotSame impl inputStr

 |@ "propAdjacentCharactersAreNotSame"

 let prop3 =

 propRunLengthSum_eq_inputLength impl inputStr

 |@ "propRunLengthSum_eq_inputLength"

 let prop4 =

 propInputReversed_implies_outputReversed impl inputStr

 |@ "propInputReversed_implies_outputReversed"

 // combine them

 prop1 .&. prop2 .&. prop3 .&. prop4

Testing the EDFH implementations

Now finally, we can test the EDFH implementations against the compound property.

The first EDFH implementation simply returned an empty list.

/// Return an empty list

let rle_empty (inputStr:string) : (char*int) list =

 []

We would expect it to fail on the first property: “The output must contain all the
characters from the input”.

let prop = Prop.forAll arbPixels (propRle rle_empty)

// -- expect to fail on propUsesAllCharacters

// check it

Check.Quick prop

(*

Falsifiable, after 1 test (0 shrinks)

Label of failing property: propUsesAllCharacters

*)

And indeed it does.

EDFH implementation #2

The next EDFH implementation simply returned each char as its own run, with a run
length of 1.

/// Return each char with count 1

let rle_allChars inputStr =

 // add null check

 if System.String.IsNullOrEmpty inputStr then

 []

 else

 inputStr

 |> Seq.toList

 |> List.map (fun ch -> (ch,1))

We would expect it to fail on the second property: “No two adjacent characters in the
output can be the same”.

let prop = Prop.forAll arbPixels (propRle rle_allChars)

// -- expect to fail on propAdjacentCharactersAreNotSame

// check it

Check.Quick prop

(*

Falsifiable, after 1 test (0 shrinks)

Label of failing property: propAdjacentCharactersAreNotSame

*)

And indeed it does.

EDFH implementation #3

The third EDFH implementation avoided the duplicate characters issues by doing a
distinct first.

let rle_distinct inputStr =

 // add null check

 if System.String.IsNullOrEmpty inputStr then

 []

 else

 inputStr

 |> Seq.distinct

 |> Seq.toList

 |> List.map (fun ch -> (ch,1))

It would pass the second property: “No two adjacent characters in the output can be
the same” but we would expect it to fail on the third property: “The sum of the run
lengths in the output must equal the total length of the input”.

let prop = Prop.forAll arbPixels (propRle rle_distinct)

// -- expect to fail on propRunLengthSum_eq_inputLength

// check it

Check.Quick prop

(*

Falsifiable, after 1 test (0 shrinks)

Label of failing property: propRunLengthSum_eq_inputLength

*)

And it does!

EDFH implementation #4

The last EDFH implementation avoided the duplicate characters issues and got the
overall run lengths right by doing a groupBy operation.

let rle_countBy inputStr =

 if System.String.IsNullOrEmpty inputStr then

 []

 else

 inputStr

 |> Seq.countBy id

 |> Seq.toList

And this is why we added a fourth property to catch this: “If the input is reversed, the
output must also be reversed”.

let prop = Prop.forAll arbPixels (propRle rle_countBy)

// -- expect to fail on propInputReversed_implies_outputReversed

// check it

Check.Quick prop

(*

Falsifiable, after 1 test (0 shrinks)

Label of failing property: propInputReversed_implies_outputReversed

*)

And it fails as expected.

Testing the correct implementations

After all those bad implementations, let’s look at some correct implementations. We
can use our four properties to have confidence that a particular implementation is
correct.

Correct implementation #1

Our first implementation will use recursion. It will strip off the run of the first
character, leaving a smaller list. It will then apply the same logic to that smaller list.

let rle_recursive inputStr =

 // inner recursive function

 let rec loop input =

 match input with

 | [] -> []

 | head::_ ->

 [

 // get a run

 let runLength = List.length (List.takeWhile ((=) head) input)

 // return it

 yield head,runLength

 // skip the run and repeat

 yield! loop (List.skip runLength input)

]

 // main

 inputStr |> Seq.toList |> loop

If we test it, it seems to work as expected.

rle_recursive "aaaabbbcca"

// [('a', 4); ('b', 3); ('c', 2); ('a', 1)]

But does it really? Let’s run it through the property checker to be sure:

let prop = Prop.forAll arbPixels (propRle rle_recursive)

// -- expect it to not fail

// check it

Check.Quick prop

(*

Ok, passed 100 tests.

*)

And yes – no properties failed!

Correct implementation #2

The recursive implementation above might have some problems with input strings that
are very large. First of all, the inner loop is not tail recursive, so the stack might
overflow. Also, by continually creating sub-lists it is creating lots of garbage, which
can affect performance.

An alternative approach is to iterate over the input once, using Seq.fold . Here’s a
basic implementation:

let rle_fold inputStr =

 // This implementation iterates over the list

 // using the 'folder' function and accumulates

 // into 'acc'

 // helper

 let folder (currChar,currCount,acc) inputChar =

 if currChar <> inputChar then

 // push old run onto accumulator

 let acc' = (currChar,currCount) :: acc

 // start new run

 (inputChar,1,acc')

 else

 // same run, so increment count

 (currChar,currCount+1,acc)

 // helper

 let toFinalList (currChar,currCount,acc) =

 // push final run onto acc

 (currChar,currCount) :: acc

 |> List.rev

 // main

 if System.String.IsNullOrEmpty inputStr then

 []

 else

 let head = inputStr.[0]

 let tail = inputStr.[1..inputStr.Length-1]

 let initialState = (head,1,[])

 tail

 |> Seq.fold folder initialState

 |> toFinalList

We could optimize this more by having a mutable accumulator, using arrays rather
than lists, and so on. But it’s good enough to demonstrate the principle.

Here’s some interactive testing to make sure that it works as expected:

rle_fold "" //=> []

rle_fold "a" //=> [('a',1)]

rle_fold "aa" //=> [('a',2)]

rle_fold "ab" //=> [('a',1); ('b',1)]

rle_fold "aab" //=> [('a',2); ('b',1)]

rle_fold "abb" //=> [('a',1); ('b',2)]

rle_fold "aaaabbbcca"

 //=> [('a',4); ('b',3); ('c',2); ('a',1)]

But of course, using the property checker is a better way to be sure:

let prop = Prop.forAll arbPixels (propRle rle_fold)

// -- expect it to not fail

// check it

Check.Quick prop

(*

Ok, passed 100 tests.

*)

And it does pass all the tests.

So the logic is correct, but as noted above, we should also do some performance
testing on large inputs and optimization before we can consider this production ready.
That’s a whole other topic!

Optimization can sometimes introduce bugs, but now that we have these properties, we
can test the optimized code in the same way and be confident that any errors will be
detected immediately.

Summary

In this post we first found a way to generate “interesting” inputs, and then using these
inputs, ran the properties from last time against the EDFH implementations. They all
failed! And then we defined two correct implementations that did satisfy all the
properties.

So are we done now? No. It turns out that the EDFH can still create an implementation
that satisfies all the properties! To finally defeat the EDFH, we’ll need to do better.

That will be the topic of the next installment.

Source code used in this post is available here.

← 1. The Return of the Enterprise Developer From Hell

3. The EDFH is defeated once again →

https://fsharpforfunandprofit.com/posts/return-of-the-edfh-3
https://github.com/swlaschin/fsharpforfunandprofit.com_code/tree/master/posts/return-of-the-edfh-2
https://fsharpforfunandprofit.com/posts/return-of-the-edfh/
https://fsharpforfunandprofit.com/posts/return-of-the-edfh-3/

Built with Hugo and

Written by ScottW. Found a typo or error? Follow me on Twitter.

The "The Return of the EDFH" series

The Return of the Enterprise Developer From Hell
More malicious compliance, more property-based testing
Generating interesting inputs for property-based testing
And how to classify them
The EDFH is defeated once again

Comments

https://gohugo.io/
https://fsharpforfunandprofit.com/about/
https://github.com/swlaschin/fsharpforfunandprofit.com
https://goo.gl/a1j5CS
https://fsharpforfunandprofit.com/posts/return-of-the-edfh/
https://fsharpforfunandprofit.com/posts/return-of-the-edfh-3/

