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TypeScript is Surprisingly OK for Compilers
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There are two main historical trends when choosing an implementation language for
something compiler-shaped.

For more language-centric tasks, like a formal speci�cation, or a toy hobby language, OCaml
makes most sense. See, for example, plzoo or WebAssembly reference interpreter.

For something implementation-centric and production ready, C++ is often chosen: LLVM,
clang, v8, HotSpot are all C++.

These days, Rust is a great new addition to the landscape. It is in�uenced most directly by
ML and C++, combines their strengths, and even brings something new of its own to the
table, like seamless, safe multithreading. Still, Rust leans heavily towards production
readiness side of the spectrum. While some aspects of it, like a “just works” build system, help
with prototyping as well, there’s still extra complexity tax due to the necessity to model
physical layout of data. The usual advice, when you start building a compiler in Rust, is to
avoid pointers and use indexes. Indexes are great! In large codebase, they allow greater
decoupling (side tables can stay local to relevant modules), improved performance (an index
is u32 and nudges you towards struct-of-arrays layouts), and more �exible computation
strategies (indexes are easier to serialize or plug into incremental compilation framework).
But they do make programming-in-the-small signi�cantly more annoying, which is a deal-
breaker for hobbyist tinkering.

But OCaml is crufty! Is there something better? Today, I realized that TypeScript might
actually be OK? It is not really surprising, given how the language works, but it never
occured to me to think about TypeScript as an ML equivalent before.

So, let’s write a tiny-tiny typechecker in TS!

Of course, we start with deno. See A Love Letter to Deno for more details, but the TL;DR is
that deno provides out-of-the-box experience for TypeScript. This is a pain point for OCaml,
and something that Rust does better than either OCaml or C++. But deno does this better
than Rust! It’s just a single binary, it comes with linting and formatting, there’s no
compilation step, and there are built-in task runner and watch mode. A dream setup for
quick PLT hacks!
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And then there’s TypeScript itself, with its su�ciently �exible, yet light-ceremony type
system.

Let’s start with de�ning an AST. As we are hacking, we won’t bother with making it an IDE-
friendly concrete syntax tree, or incremental-friendly “only store relative o�sets” tree, and
will just tag AST nodes with locations in �le:

export interface Location {
  file: string;
  line: number;
  column: number;
}

Even here, we already see high-level nature of TypeScript — string is just a string, there’s no
thinking about usize vs u32 as numbers are just numbers.

Usually, an expression is de�ned as a sum-type. As we want to tag each expression with a
location, that representation would be slightly inconvenient for us, so we split things up a bit:

export interface Expr {
    location: Location;
    kind: ExprKind;
}

export type ExprKind = ExprBool | ExprInt | ... ;

One more thing — as we are going for something quick, we’ll be storing inferred types
directly in the AST nodes. Still, we want to keep raw and type-checked AST separate, so
what we are going to do here is to parametrize the Expr over associated data it stores. A
freshly parsed expression would use void as data, and the type checker will set it to Type.
Here’s what we get:

export interface Expr<T> {
  location: Location;
  data: T;
  kind: ExprKind<T>;
}

export type ExprKind<T> =
  | ExprBool<T>
  | ExprInt<T>
  | ExprBinary<T>
  | ExprControl<T>;

A de�nition of ExprBinary could look like this:
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export interface ExprBinary<T> {
  op: BinaryOp;
  lhs: Expr<T>;
  rhs: Expr<T>;
}

export enum BinaryOp {
  Add, Sub, Mul, Div,
  Eq, Neq,
  Lt, Gt, Le, Ge,
}

Note how I don’t introduce separate types for, e.g, AddExpr and SubExpr — all binary
expressions have the same shape, so one type is enough!

But we need a tiny adjustment here. Our Expr kind is de�ned as a union type. To match a
value of a union type a bit of runtime type information is needed. However, it’s one of the
core properties of TypeScript that it doesn’t add any runtime behaviors. So, if we want to
match on expression kinds (and we for sure want!), we need to give a helping hand to the
compiler and include a bit of RTTI manually. That would be the tag �eld:

export interface ExprBinary<T> {
  tag: "binary";
  op: BinaryOp;
  lhs: Expr<T>;
  rhs: Expr<T>;
}

tag: "binary" means that the only possible runtime value for tag is the string "binary".

Similarly to various binary expressions, boolean literal and int literal expressions have almost
identical shape. Almost, because the payload (boolean or number) is di�erent. TypeScript
allows us to neatly abstract this over:

export type ExprBool<T> = ExprLiteral<T, boolean, "bool">;
export type ExprInt<T> = ExprLiteral<T, number, "int">;

export interface ExprLiteral<T, V, Tag> {
  tag: Tag;
  value: V;
}

Finally, for control-�ow expressions we only add if for now:

export type ExprControl<T> = ExprIf<T>;

export interface ExprIf<T> {
  tag: "if";
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  cond: Expr<T>;
  then_branch: Expr<T>;
  else_branch: Expr<T>;
}

This concludes the de�nition of the ast! Let’s move on to the type inference! Start with
types:

type Type = TypeBool | TypeInt;

interface TypeBool {
  tag: "Bool";
}
const TypeBool: TypeBool = { tag: "Bool" };

interface TypeInt {
  tag: "Int";
}
const TypeInt: TypeInt = { tag: "Int" };

Our types are really simple, we could have gone with

type Type = "Int" | "Bool",

but lets do this a bit more enterprisy! We de�ne separate types for integer and boolean types.
As these types are singletons, we also provide canonical de�nitions. And here is another
TypeScript-ism. Because TypeScript fully erases types, everything related to types lives in a
separate namespace. So you can have a type and a value sharing the same name. Which is
exactly what we use to de�ne the singletons!

Finally, we can take advantage of our associated-data parametrized expression and writhe the
signature of

function infer_types(expr: ast.Expr<void>): ast.Expr<Type>

As it says on the tin, inter_types �lls in Type information into the void! Let’s �ll in the
details!

function infer_types(expr: ast.Expr<void>): ast.Expr<Type> {
  switch (expr.kind.tag) {
    cas
  }
}

If at this point we hit Enter, the editor completes:
function infer_types(expr: ast.Expr<void>): ast.Expr<Type> {
  switch (expr.kind.tag) {
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    case "bool":
    case "int":
    case "binary":
    case "if":
  }
}

There’s one problem though. What we really want to write here is something like

const inferred_type = switch(..),

but in TypeScript switch is a statement, not an expression. So let’s de�ne a generic visitor!

export type Visitor<T, R> = {
  bool(kind: ExprBool<T>): R;
  int(kind: ExprInt<T>): R;
  binary(kind: ExprBinary<T>): R;
  if(kind: ExprIf<T>): R;
};

export function visit<T, R>(
  expr: Expr<T>,
  v: Visitor<T, R>,
): R {
  switch (expr.kind.tag) {
    case "bool": return v.bool(expr.kind);
    case "int": return v.int(expr.kind);
    case "binary": return v.binary(expr.kind);
    case "if": return v.if(expr.kind);
  }
}

Armed with the visit, we can write ergonomically match over the expression:

function infer_types(expr: ast.Expr<void>): ast.Expr<Type> {
  const ty = visit(expr, {
    bool: () => TypeBool,
    int: () => TypeInt,
    binary: (kind: ast.ExprBinary<void>) => result_type(kind.op),
    if: (kind: ast.ExprIf<void>) {
      ...
    },
  });
  ...
}

function result_type(op: ast.BinaryOp): Type {
  switch (op) { // A tad verbose, but auto-completed!
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    case ast.BinaryOp.Add: case ast.BinaryOp.Sub:
    case ast.BinaryOp.Mul: case ast.BinaryOp.Div:
      return TypeInt

    case ast.BinaryOp.Eq: case ast.BinaryOp.Neq:
      return TypeBool

    case ast.BinaryOp.Lt: case ast.BinaryOp.Gt:
    case ast.BinaryOp.Le: case ast.BinaryOp.Ge:
      return TypeBool
  }
}

Before we go further, let’s generalize this visiting pattern a bit! Recall that our expressions are
parametrized by the type of associated data, and type-checker-shaped transformations are
essentially an

Expr<U> -> Expr<V>

transformation.

Let’s make this generic!

export function transform<U, V>(expr: Expr<U>, v: Visitor<V, V>): Expr<V>

Transform maps an expression carrying T into an expression carrying V by applying an f
visitor. Importantly, it’s Visitor<V, V>, rather than a Visitor<U, V>. This is counter-
intuitive, but correct — we run transformation bottom up, transforming the leaves �rst. So,
when the time comes to visit an interior node, all subexpression will have been transformed!

The body of transform is wordy, but regular, rectangular, and auto-comptletes itself:

export function transform<U, V>(expr: Expr<U>, v: Visitor<V, V>): Expr<V>
  switch (expr.kind.tag) {
    case "bool":
      return {
        location: expr.location,
        data: v.bool(expr.kind),
        kind: expr.kind, 1
      };
    case "int":
      return {
        location: expr.location,
        data: v.int(expr.kind),
        kind: expr.kind,
      };
    case "binary": {
      const kind: ExprBinary<V> = { 2
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        tag: "binary",
        op: expr.kind.op,
        lhs: transform(expr.kind.lhs, v),
        rhs: transform(expr.kind.rhs, v),
      };
      return {
        location: expr.location,
        data: v.binary(kind), 2
        kind: kind,
      };
    }
    case "if": {
      const kind: ExprIf<V> = {
        tag: "if",
        cond: transform(expr.kind.cond, v),
        then_branch: transform(expr.kind.then_branch, v),
        else_branch: transform(expr.kind.else_branch, v),
      };
      return {
        location: expr.location,
        data: v.if(kind),
        kind: kind,
      };
    }
  }
}

The code is pretty regular here though! So at this point we might actually recall that
TypeScript is a dynamically-typed language, and write a generic traversal using Object.keys,
while keeping the static function signature in-place. I don’t think we need to do it here, but
there’s comfort in knowing that it’s possible!

Now implementing type inference should be a breeze! We need some way to emit type errors
though. With TypeScript, it would be trivial to accumulate errors into an array as a side-
e�ect, but let’s actually represent type errors as instances of a speci�c type, TypeError (pun
intended):

type Type = TypeBool | TypeInt | TypeError;

interface TypeError {
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Note how here expr.kind is both Expr<U> and Expr<V> — literals don’t depend on this
type parameter, and TypeScript is smart enough to �gure this out without us manually
re-assembling the same value with a di�erent type.
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  tag: "Error";
  location: ast.Location;
  message: string;
}

To check ifs and binary expressions, we would also need an utility for comparing types:

function type_equal(lhs: Type, rhs: Type): boolean {
  if (lhs.tag == "Error" || rhs.tag == "Error") return true;
  return lhs.tag == rhs.tag;
}

We make the Error type equal to any other type to prevent cascading failures. With all that
machinery in place, our type checker is �nally:

function infer_types(expr: ast.Expr<void>): ast.Expr<Type> {
  return ast.transform(expr, {
    bool: (): Type => TypeBool,
    int: (): Type => TypeInt,

    binary: (kind: ast.ExprBinary<Type>, location: ast.Location): Type =>
      if (!type_equal(kind.lhs.data, kind.rhs.data)) {
        return {
          tag: "Error",
          location,
          message: "binary expression operands have different types",
        };
      }
      return result_type(kind.op);
    },

    if: (kind: ast.ExprIf<Type>, location: ast.Location): Type => {
      if (!type_equal(kind.cond.data, TypeBool)) {
        return {
          tag: "Error",
          location,
          message: "if condition is not a boolean",
        };
      }
      if (!type_equal(kind.then_branch.data, kind.else_branch.data)) {
        return {
          tag: "Error",
          location,
          message: "if branches have different types",
        };
      }
      return kind.then_branch.data;
    },
  });
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}

function result_type(op: ast.BinaryOp): Type {
    ...
}

Astute reader will notice that our visitor functions now take an extra ast.Location
argument. TypeScript allows using this argument only in cases where it is needed, cutting
down verbosity.

And that’s all for today! The end result is pretty neat and concise. It took some typing to get
there, but TypeScript autocompletion really helps with that! What’s more important, there
was very little �ghting with the language, and the result feels quite natural and directly
corresponds to the shape of the problem.

I am not entirely sure in the conclusion just yet, but I think I’ll be using TypeScript as my
tool of choice for various small language hacks. It is surprisingly productive due to the
con�uence of three aspects:

deno is a perfect scripting runtime! Small, hermetic, powerful, and optimized for e�ective
development work�ows.
TypeScript tooling is great — the IDE is helpful and productive (and deno makes sure
that it also requires zero con�guration)
The language is powerful both at runtime and at compile time. You can get pretty fancy
with types, but you can also just escape to dynamic world if you need some very high-
order code.

Just kidding, here’s one more cute thing. Let’s say that we want to have lots of syntactic
sugar, and also want type-safe desugaring. We could tweak our setup a bit for that: instead of
Expr and ExprKind being parametrized over associated data, we circularly parametrize Expr
by the whole ExprKind and vice verse:

interface Expr<K> {
  location: Location,
  kind: K,
}

interface ExprBinary<E> {
  op: BinaryOp,
  lhs: E,
  rhs: E,
}

This allows expressing desugaring in a type-safe manner!
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// Fundamental, primitive expressions.
type ExprKindCore<E> =
    ExprInt<E> | ExprBinary<E> | ExprIf<E>

// Expressions which are either themselves primitive,
// or can be desugared to primitives.
type ExprKindSugar<E> = ExprKindCore<E>
    | ExprCond<E> | ExprUnless<E>

type ExprCore = Expr<ExprKindCore<ExprCore>>;
type ExprSugar = Expr<ExprKindSugar<ExprSugar>>;

// Desugaring works by reducing the set of expression kinds.
function desugar(expr: ExprSugar): ExprCore

// A desugaring steps takes a (potentially sugar) expression,
// whose subexpression are already desugared,
// and produces an equivalent core expression.
function desugar_one(
    expr: ExprKindSugar<ExprCore>,
): ExprKindCore<ExprCore>

 �x typo  rss  matklad
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