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Five years of GPT progress
If you want to read more of my writing, I have a Substack.

In this article, I discuss the generative pre-trained transformer (GPT) line of work, and
how it has evolved over time. I focus on the SOTA models, and the differences
between them. There are a bunch of different articles summarizing these papers, but
nothing that I’m aware of that explicitly focuses on the differences between them.

I focus on the GPT line of research as that’s what’s driving the current fever pitch of
development. There’s a ton of prior work before large GPTs (eg the n-gram models
from the 2000s, BERT, etc) but this post is super long, so I’m gonna save those for
future articles.

GPT
Abstract

The first GPT paper is interesting to read in hindsight. It doesn’t appear like anything
special and doesn’t follow any of the conventions that have developed. The dataset is
described in terms of GB rather than tokens, and the number of parameters in the
model isn’t explicitly stated. To a certain extent, I suspect that the paper was a side
project at OpenAI and wasn’t viewed as particularly important; there’s only 4 authors,
and I don’t remember it particularly standing out at the time.

The architecture is remarkably unchanged compared to GPT-3:

Decoder-only transformer, with 12 layers, 768 embedding dimension, 12
attention heads, and 3072 (4x the embedding dimensions).

They use Adam, with a warm up, and anneal to 0 using a cosine schedule.

Initialize weights to N(0, 0.02), using BPE with a vocab of 40000 merges.

Activations are GELUs.

Context of 512

117M parameters

Learned position embedding, not the sinusoidal ones from “Attention is all you
need”.

The number of parameters isn’t explicitly discussed, but appears to be roughly 120M,
easily enough to fit on a single V100 or a standard consumer GPU (rough estimate of
120M parameters for the model, 240M for the optimizer, for 360M parameters;
assuming each is a float32, then this takes up 4 bytes * 360M = 1440MB/1.4GB.

They use the BooksCorpus dataset (~20M tokens), training for 100 epochs with a
batch size of 64. 20M tokens is a very small dataset by modern standards, as is a
batch size of 64.

The most surprising thing compared to modern GPTs is that they train for 100 epochs.
Modern GPTs rarely ever see repeated data, and if they do, they typically only see
certain datapoints a small number of times (2-4x), and the entire dataset is never
repeated 100x.

GPT-2
Abstract
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GPT-2 is where the language models start to get big. This is the first time that OpenAI
trains a model with >1B parameters. We start to see scale as a primary concern; in
GPT, the authors trained a single model, but here, the authors train a range of models,
with sizes ranging from GPT to 10x GPT (which is the actual GPT-2 model).

The differences in architecture compared to GPT are as follows:

They layernorm the inputs and add an additional layernorm to the output of the
final self-attention block

Weights are scaled by layer by 1/sqrt(n)

Vocabulary of ~50k (up from ~40k)

Context of 1024 (up from 512)

Batches of 512 (up from 64)

Largest model is 1.5B parameters

The dataset is much, much bigger, going from roughly 20M tokens (4GB) of data
consisting of publicly available books, to 9B tokens  (40GB) of text scraped from the
internet (WebText).

It’s unclear if they trained the model for 100 epochs as before; they say they followed
the same training procedure, so presumably they did. Again, this is a significant
departure from later work.

Nothing here is particularly different from GPT; most of the changes are related to
making the model bigger. The only other changes are the layernorm changes and the
weight scaling, which don’t seem to make a big difference (although, as always, more
ablations would be nice).

GPT-3
Abstract

Here is where the era of truly large language models began, and the current AI bubble
excitement took off. In the paper, the authors train 10 models, varying from 125M
parameters (”GPT-3 Small”) to 175B parameters (”GPT-3”).

For each of the models, the architectures are identical to GPT-2 with the exception that
they use “alternating dense and locally banded sparse attention patterns in the layers
of the transformer.” The sparse attention here refers to the attention mechanism

introduced in the Sparse Transformer, which lets attention scale proportional to O(n√n)
(where n is the context length). The standard dot-product attention mechanism scales

proportional to O(n2), so this is a substantial gain. I would have loved a proper ablation
to see what difference sparse vs dense attention makes, but alas.
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I’m very curious why they used sparse attention. Reproductions and later papers
uniquely use dense attention. As this paper came before FlashAttention and some of
the other algorithmic innovations that make dense attention faster, maybe this was a
computational bottleneck? It’s really unclear.

They don’t provide any detail about the computational architecture, i.e. how they
distributed the model. The authors claim it’s because it doesn’t really matter, but I think
it was restricted for competitive reasons, as it makes the paper much more difficult to
reproduce. Megatron, which I’ll discuss later, was highly influential because they went
into detail about how they made model parallelism work for their GPT.

What I find really interesting about the GPT-3 paper is that I don’t think this gets
published in a top journal (nature/science), maybe not even NeurIPS. This isn’t a
critique of GPT-3— it’s a critique of the modern conference circuit, and if anything, a
celebration of the culture that OpenAI has. Most of the conference publishing circuit is
driven by novelty, even if it’s not what we need. The GPT-3 paper, however, was a
largely engineering driven paper; they made the model bigger and it worked much
better! That’s not novel from a research perspective, but is transformative from an
application perspective.

This is particularly problematic because we know that adding complexity to our models
increases performance (see: R^2 vs adjusted R^2 for simple linear models). Because
of the need for novelty, there are many research projects that don’t get pursued
because they’re “only” engineering projects, or they “only” do hyper-parameter tuning
and wouldn’t be able to get published, even if they had impressive performance
improvements. That OpenAI went against the grain here is a credit to them.

This is a strength of OpenAI (and Stability.ai, Midjourney, basically everywhere that’s
not FAIR/Google Brain/Deepmind/etc). You could alternatively frame it as a weakness
of the more academic labs that have promotion/performance review policies driven by
publications.

Jurassic-1
PDF

I wasn’t sure whether or not to include Jurassic-1. It’s a model from the Israeli tech
company AI21 Labs. I haven’t heard a lot about them, but the paper’s cited by a bunch
of the papers later on in the article; they trained a 178B parameter model that
outperformed GPT-3 in a few categories, and was faster for inference. It’s impressive
that they’re competing with DeepMind, OpenAI, Nvidia, etc. despite only having raised
<$$10M at the time. They made a zero-shot and few-shot test suite publicly available.

Like many other papers, they don’t go into detail about the engineering details behind
training a large model (178B parameters) over 800 GPUs:

The paper is remarkably sparse on details, which I suspect was done for competitive
reasons, just like GPT-4.

Facebook is the only company to go into detail about their experiences training a 175B
parameter model, just like Nvidia is the only company to go into detail about the
computational architecture required to train a LLM over many GPUs (see: the
Megatron paper, next). In both cases, the companies are commoditizing their
complements and strengthening their main lines of business by making it easier to
train large models.
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Jurassic uses a different architecture from GPT-3, but again, doesn’t go into much
detail:

76 layers (vs 96 layers for GPT-3)

They use the SentencePiece tokenizer, with a large vocabulary of 256K (vs
GPT-3 which used BPE w/ ~50k tokens).

Neither of these changes are material, in my opinion. I think what we’re seeing is that
there’s a relatively large degree of freedom in model architectures which produce
similar results. This is borne out by their evaluation, which has results similar to GPT-3
(better in some categories, worse in others), although Jurassic-1 is faster for inference
due to being shallower.

We’re starting to see a consistent pattern emerge:

Papers introduce a bunch of changes, their own dataset, and have a new SOTA

but they don’t do a proper ablation, so it’s tough to understand what was
important and what drove the improvements

GPT-2, GPT-3, Jurassic-1, etc. all did this.

Megatron-Turing NLG
Megatron was a highly influential paper that introduced efficient model-parallel
architectures. If you’re interviewing for a LLM job today, you’re going to be expected to
be familiar with it. Megatron introduced tensor parallelism, a variant of model
parallelism that splits the models to allow for intra-layer model parallelism, achieving
76% as efficient as a single GPU baseline (although the baseline is only 30% of peak
FLOPS).

Prior to megatron, the published SOTA for model parallelism was to use model
pipelining, e.g. GPipe. However, this was difficult to do and not well supported by code.
There were attempts to support tensor parallelism, e.g. Mesh-Tensorflow, which
introduced a language for specifying a general class of distributed computations in
TensorFlow, but nothing had really dominated. Interestingly, the first author had just left
DeepMind 1 year before this was published, so this was possibly his first project at
Nvidia.

Megatron has the realization that, if you have a neural network like this:

Y = f(XW)

and you split W = [W1 W2], i.e. along the columns, then Y = [f(XW1) f(XW2)], so

you don’t need to do any synchronization to calculate Y. Consequently, the only points
where you need synchronization (all-reduces) in the transformer are:

1. In the forward pass, to concatenate the model activations after the MLP block
before adding dropout

2. In the backwards pass, at the start of the self-attention block.
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Now, I strongly suspect this is what GPT-3 and Jurassic-1 both did, but neither went
into detail about the specific parallelism models they used, other than to say (from
GPT-3):

To train the larger models without running out of memory, we use a
mixture of model parallelism within each matrix multiply and model
parallelism across the layers of the network.

Presumably, this style of parallelism is what is meant by “model parallelism within each
matrix multiply,” as I find it hard to imagine what else they could mean.

Gopher
Abstract

Gopher was a LLM trained by DeepMind. Interestingly, the lead author joined OpenAI
shortly after it was published, along with a few of the coauthors. The architecture was
the same as GPT-2, except:

They use RMSNorm (instead of layernorm)

Use relative positional encoding scheme from Transformer-XL (while GPT-*
used a learned positional embedding)

They use SentencePiece (instead of BPE). This seems to be an Alphabet thing;
many of the Alphabet papers use SentencePiece, while most of the non-
Alphabet world uses BPE.

The paper was very interesting from a computational perspective, as they went into
detail about how they trained their model and made it work:

They used optimizer state partitioning (ZeRO)Processing math: 100%
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Megatron-style model parallelism

And rematerialization/gradient checkpointing to save memory.

These are all now the standard techniques used to train large models. To the best of
my knowledge, Gopher was the first paper to put all of these together and release
details about doing so publicly.

It’s interesting— often, big labs don’t include details for comeptitive reasons. Here,
because DeepMind was (arguably) behind, they went into extensive detail. I think we’ll
see this increase with LLM research from everyone that’s not OpenAI/Anthropic, as the
others don’t live/die by the commercial success of their API, and have strong
incentives to make it easier for **others** to train large models (and thereby
commoditize their complements).

For the paper, DeepMind built a dataset called MassiveText, which was as follows:

Interestingly, this is much smaller than the dataset OpenAI used for GPT-3. GPT-3 had
roughly 45TB of text, while MassiveText “only” had about 10.5TB.

They used this dataset to trained a large model on 300B tokens. The dataset consists
of 2.343 trillion tokens, so this is only 12.8%. A much smaller subset. This is interesting
to compare to the earlier GPTs, which, if you recall, used 100 epochs (so they saw
each token in the dataset 100 times— while Gopher only saw 10% of their tokens
once)!

The Gopher appendices have some great work; someone finally did ablations! They
looked at:

Adafactor vs Adam, and found that Adafactor was much less stable

Lower-precision training, trying runs with float16, bfloat16, float32, RandRound,
and using bfloat16 parameters with float32 in the optimiser state (rounding
randomly). They found that using float32 parameters for optimisation updates
only mitigated the performance loss, saving a substantial amount of memory.

Scaling context length; they show how performance increases as the context
length increases. Improvements see diminishing returns, but consistently

improve. Performance looks roughly proportionate to √n (where n is the context
length).

It’s really nice to see detailed empirical work like this— it’s a welcome change from the
other papers that failed to do this.

Chinchilla
Abstract
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Chinchilla is an incredibly influential paper that established scaling laws. It’s one of my
favorite papers from the last few years, as it actually does science in a way that
physicists would agree with. One answer to “is something science” is to say, if you
were to meet a historical scientist in your field, could you teach them something? And if
you brought Chinchilla to researchers to, say, Radford et. al in 2017, it would advance
their work by several years.

Chinchilla trained over 400 GPT-style transformers, ranging in size from 70M to 16B
parameters, and fit the following equation (N is the number of parameters in the LM,
and D is the number of tokens in the dataset):

ˆL(N, D) = E + ANα
+ BDβ

Choosing A, B, E, α, β to minimize

∑ Runs iHuberδ=10−3(logˆLi − logLi)

where the Huber loss is

Huberδ(x) ={12a2 | a | ≤ δ, δ ⋅ ( | a | − 12δ) | a | > δ

Here, we can think of E as the “irreducible loss” from the dataset, i.e. the loss if we
trained an infinitely large model on an infinite stream of tokens. The authors find that
the optimal model is (from nostalgebraist on into the implications of Chinchilla):

The implication here is that the model size & data size matter roughly equally, which is
interesting, given how much attention & effort goes to scaling up the model, and how
little attention is given to the dataset.

The authors then used this equation to determine the optimal model size for the
Gopher compute budget, and trained it on more tokens— 1.4T tokens, 4.6x the
number of tokens Gopher was trained on. This model, being 4x smaller, has a radically
smaller memory footprint and is much faster/cheaper to sample from.

The Chinchilla paper has been highly influential. Almost every team that I’ve been
talking to that is training a LLM right now talks about how they’re training a Chinchilla
optimal model, which is remarkable given that basically everything in the LLM space
changes every week.

The standard practice before Chinchilla was to train your model for 300B tokens, which
is what GPT-3, Gopher, and Jurassic-1 all did. Chinchilla reveals how wasteful that
was; basically, all of these papers made themselves more expensive to infer by
training models that were too large.

Changes from Chinchilla (otherwise the same as Gopher):

AdamW instead of Adam (there’s an interesting footnote regarding the choice of
optimizer: “a model trained with AdamW only passes the training performanceProcessing math: 100%
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of a model trained with Adam around 80% of the way through the cosine cycle,
though the ending performance is notably better”)

Uses a modified SentencePiece tokenizer that is slightly different from Gopher
(doesn’t apply NFKC normalisation)

They compute the forward + backward pass in bfloat16, but store a float32 copy
of the weights in the optimizer state. They find that this is basically identically
efficient to using float32 everywhere.

All of the changes are ablated extensively in the appendix. None of these are
particularly novel.

PaLM
Speaking of training models that were too large- we have PaLM! Palm was really,
really big. As far as I’m aware, it’s the largest dense language model trained to date, at
540B parameters, requiring 6144 TPUs to train on (this is 3 entire TPU pods, each
consisting of 2048 TPUs). This is incredibly expensive! Probably only Google has the
resources + infrastructure to do this.

… unfortunately, they were training PaLM at the same time chinchilla was being
written. Very suboptimal.

Changes from GPT-3:

Multi-query attention. Shares K/V embeddings for each head, but has separate
Q embeddings. Makes it much faster during inference time.

Uses parallel transformer blocks, which improves training time by 15%. As it
was trained using 6144 TPU v4 chips for 1200 hours, the total training cost (at
public prices) is between 1.45to3.22 per chip-hour, for a total of 10Mto22M. So
this change saved 1.5Mto3M.

SwiGLU activations, rather than the GELU activation used by GPT-3

RoPE embeddings, rather than the learned embeddings

Shares the input-output embeddings

No bias vectors

SentencePiece with 256k tokens

So, a ton of changes! Again, a bunch of these are common, e.g. using the learned
embeddings that GPT-3 had is very passé, and almost no one does it now.

LLaMa
Abstract

LLaMa combined a bunch of the best feartures from PaLM and Chinchilla:

Pre-normalize the input of each transformer sub-layer

RMSNorm, instead of LayerNorm, as done in Gopher

SwiGLU activation function from PaLM (but a dimension of 234d instead of 4d,
as in PaLM)

Uses rotary positional embeddings (RoPE) instead of the absolute positional
embeddings, as done in PaLM

Uses AdamW, as done in Chinchilla

I think that LLaMa is the recipe to follow for the current SOTA in training large models.Processing math: 100%
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Computational changes:

Uses efficient attention (Rabe & Staats, FlashAttention)

Gradient checkpointing

Interestingly, they appear to be using float32s everywhere (or at least, don’t say
otherwise)

These are all similar to Gopher. The one obvious optimization they missed is to use
lower precision, as Chinchilla did; I’m curious why they didn’t.

My one complaint is that I wish they would have trained the model for longer. The
learning curve is very far from convergence! This paper is, in my mind, the shining
example showing how well smaller models can do when trained well.

GPT-4
This is where I’d include information about GPT-4, if there was any. Unfortunately, the
GPT-4 technical report contains almost no information:

GPT-4 is a Transformer-style model [33] pre-trained to predict the next
token in a document, using both publicly available data (such as internet
data) and data licensed from third-party providers. The model was then
fine-tuned using Reinforcement Learning from Human Feedback (RLHF)
[34]. Given both the competitive landscape and the safety implications of
large-scale models like GPT-4, this report contains no further details
about the architecture (including model size), hardware, training
compute, dataset construction, training method, or similar.
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As a result, I’m not going to talk about it, as there’s not much to say. Hopefully OpenAI
changes their mind and releases some information about their model.

Conclusion
This is it, as of March ‘23. I’m sure something new will come along and invalidate all of
this.

What have I missed? Add comments on Substack or email me and I’ll update it.

Articles I’m reading:

Why didn’t DeepMind build GPT-3?

1. The paper itself doesn’t report the number of tokens, but OpenWebText, the
open source reproduction, gets nine billion, using OpenAI’s tokenizer. ↩

2. To be clear, I highly doubt this will ever happen. ↩

PS if you want to read more of my writing, subscribe to my Substack.
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