symbex: search Python code for functions and classes, then pipe them

intoa LLM
18th June 2023

| just released a new Python CLI tool called symbex. It's a search tool, loosely inspired by
ripgrep, which lets you search Python code for functions and classes by name or wildcard, then
see just the source code of those matching entities.

Searching for functions and classes

Here’s an example of what it can do. Running in my datasette/ folder:

symbex inspect hash

Output:

File: datasette/inspect.py Line: 17
def inspect hash(path):
"""Calculate the hash of a database, efficiently."""
m = hashlib.sha256()
with path.open("rb") as fp:
while True:
data = fp.read(HASH BLOCK SIZE)
if not data:
break
m.update(data)

return m.hexdigest()

| gave it the name of a function (classes work too) and it searched all subfolders of the current
directory, found that function and output it to my terminal.

Why is this more useful than ripgrep or any of the many other tools that can do this?

| partly built this to have fun learning Python’s ast module, but it's mainly designed to
complement my LLM CLI tool for running large language model prompts.

Code explanations with a large language model

Check this out:

symbex inspect hash | 1lm --system 'explain succinctly'

Output:

This function calculates the hash of a database file efficiently by reading the file in blocks
and updating the hash object using SHA256 algorithm from the hashlib module. The
resulting hash value is returned as a hexadecimal string.

https://github.com/simonw/symbex
https://github.com/BurntSushi/ripgrep
https://docs.python.org/3/library/ast.html
https://llm.datasette.io/
https://simonwillison.net/
https://simonwillison.net/about/#subscribe

This is pretty cool!

1lm --system 'explain succinctly' runs a prompt against gpt-3.5-turbo using “explain
succinctly” as the system prompt.

The system prompt says what to do, then the content piped to the tool is treated as the data that

should be processed.

Using wildcards and guessing what a tool does from tests

That was a pretty basic example. Here’s something more fun:
symbex 'test*csv*' | 1lm --system 'based on these tests guess what this tool does'
I'm using the test*csv* wildcard here to find all of my test functions that mention CSV in the

name. There are 18 of those, with names like test table csv with labels and
test table csv cors headers.

I can count the number of tokens in the test output like this (see lIm, ttok and strip-tags—CLI
tools for working with ChatGPT and other LLMs for an intro to my ttok tool):

symbex 'test *csv*' | ttok
2682

That'’s significantly below the 4000 token limit for gpt-3.5-turbo.
Here’s what | get when | ask it “based on these tests guess what this tool does™:

This tool seems to be a web application that provides a user interface to query databases
and export query results in various formats, including HTML, JSON, and CSV. The tests
verify that the tool correctly generates HTML pages with links to export query results in
JSON or CSV format, exports tables to CSV format with custom options (such as whether to
include labels and nullable labels), and performs streaming of CSV data. The tests also
check that the tool sets appropriate HTTP headers, allows CORS, and handles errors and
large CSV files gracefully.

That's a good summary of what Datasette does!

| was worried that it might be cheating since ChatGPT already knows about Datasette, but |
tried this:

symbex 'test *csv*' | grep datasette
And got no results, so at least that keyword wasn’t being leaked in the test details somehow.

Refactoring code

Let’s try something a whole lot more useful:

symbex Request | 1lm --system 'add type hints to this'

https://simonwillison.net/2023/May/18/cli-tools-for-llms/

This locates the Request class in Datasette—this one here, and starts adding Python type hints
to it. The output started out like this (that code has no type hints at all at the moment):

from typing import Dict, Any, Awaitable
from http.cookies import SimpleCookie
from urllib.parse import urlunparse, parse qs, parse gsl

from .multidict import MultiParams

class Request:
def init (self, scope: Dict[str, Any], receive: Awaitable) -> None:
self.scope = scope
self.receive = receive

def repr_(self) -> str:
return '<asgi.Request method="{}" url="{}">'.format(self.method, self.url)

@property
def method(self) -> str:
return self.scope["method"]

@property
def url(self) -> str:
return urlunparse(
(self.scheme, self.host, self.path, None, self.query string, None)

@property
def url vars(self) -> Dict[str, str]:
return (self.scope.get("url route") or {}).get("kwargs") or {}

Now this is getting impressive! Obviously | wouldn't just check code like this in without a
comprehensive review and likely adjusting many of the decisions it's made, but this is a very
good starting point—especially for the tiny amount of effort it takes to get started.

Picking a name for the tool

The most time-consuming part of this project ended up being picking the name!

Originally I planned to call it py-grep. | checked https://pypi.org/project/py-grep/ and it was
available, so | spun up the first version of the tool and attempted to upload it to PyPI.

PyPI gave me an error, because the name was too similar to the existing pygrep package. On
the one hand that'’s totally fair, but it was annoying that | couldn’t check for availability without
attempting an upload.

https://github.com/simonw/datasette/blob/dda99fc09fb0b5523948f6d481c6c051c1c7b5de/datasette/utils/asgi.py#L56-L156

| turned to ChatGPT to start brainstorming new names. | didn’t use regular ChatGPT though: |
fired up ChatGPT Browse, which could both read my README and, with some prompting, could
learn to check if names were taken itself!

—3':&5. All of those names are taken, more ideas please - you can check if they are taken by
checking for https://pypi.org/project/pyseek/

(& Finished browsing ~

Clicked on: pydex: PyPl
Clicked on: pyscan - PyPl
Clicked on: pylocator - PyPl
Clicked on: pyspotter - PyPl 1
Clicked on: pylacator - PyPl
Clicked on: pyfinder - PyPl
Clicked on: PyScanner - PyPl &

Clicked on: PyLookup - PyPl 7

'S

'3

'S

A3

'3

"3

'3

i3

R Clicked on: PySpot - PyPl
R Clicked on: PyLookup - PyPl 7
R Clicked on: pylocator - PyPl 7
R Clicked on: pyfinder - PyPl F
R Clicked on: pylocator - PyPl &
YR Clicked on: pyfinder - PyPl
@ Click failed

@

Finished browsing

It seems there was an error fetching the page. This might indicate that the name

"pysourcefinder" is not taken, but it would be safer to verify manually.

| wrote up the full process for this in a TIL: Using ChatGPT Browse to name a Python package.

Posted 18th June 2023 at 10:11 pm - Follow me on Mastodon or Twitter or subscribe to my newsletter

More recent articles

How | make annotated presentations - 6th August 2023

Weeknotes: Plugins for LLM, sqlite-utils and Datasette - 5th August 2023

Catching up on the weird world of LLMs - 3rd August 2023

Run Llama 2 on your own Mac using LLM and Homebrew - 1st August 2023

sqlite-utils now supports plugins - 24th July 2023

Accessing Llama 2 from the command-line with the lim-replicate plugin - 18th July 2023

Weeknotes: Self-hosted language models with LLM plugins, a new Datasette tutorial, a dozen package
releases, a dozen TILs - 16th July 2023

https://til.simonwillison.net/gpt3/picking-python-project-name-chatgpt
https://simonwillison.net/2023/Jun/18/
https://fedi.simonwillison.net/@simon
https://twitter.com/simonw
https://simonwillison.net/about/#subscribe
https://simonwillison.net/2023/Aug/6/annotated-presentations/
https://simonwillison.net/2023/Aug/5/weeknotes-plugins/
https://simonwillison.net/2023/Aug/3/weird-world-of-llms/
https://simonwillison.net/2023/Aug/1/llama-2-mac/
https://simonwillison.net/2023/Jul/24/sqlite-utils-plugins/
https://simonwillison.net/2023/Jul/18/accessing-llama-2/
https://simonwillison.net/2023/Jul/16/weeknotes/

= My LLM CLI tool now supports self-hosted language models via plugins - 12th July 2023
= Weeknotes: symbex, LLM prompt templates, a bit of a break - 27th June 2023

python sse generativeai 257 projects si4 chatgpt es ai 276 lIms 226 symbex s

Next: Weeknotes: symbex, LLM prompt templates, a bit of a break

Previous: Understanding GPT tokenizers

https://simonwillison.net/2023/Jul/12/llm/
https://simonwillison.net/2023/Jun/27/weeknotes/
https://simonwillison.net/tags/python/
https://simonwillison.net/tags/generativeai/
https://simonwillison.net/tags/projects/
https://simonwillison.net/tags/chatgpt/
https://simonwillison.net/tags/ai/
https://simonwillison.net/tags/llms/
https://simonwillison.net/tags/symbex/
https://simonwillison.net/2023/Jun/27/weeknotes/
https://simonwillison.net/2023/Jun/8/gpt-tokenizers/
https://github.com/simonw/simonwillisonblog
https://simonwillison.net/2002/
https://simonwillison.net/2003/
https://simonwillison.net/2004/
https://simonwillison.net/2005/
https://simonwillison.net/2006/
https://simonwillison.net/2007/
https://simonwillison.net/2008/
https://simonwillison.net/2009/
https://simonwillison.net/2010/
https://simonwillison.net/2011/
https://simonwillison.net/2012/
https://simonwillison.net/2013/
https://simonwillison.net/2014/
https://simonwillison.net/2015/
https://simonwillison.net/2016/
https://simonwillison.net/2017/
https://simonwillison.net/2018/
https://simonwillison.net/2019/
https://simonwillison.net/2020/
https://simonwillison.net/2021/
https://simonwillison.net/2022/
https://simonwillison.net/2023/

