
zknill / sqledge Public

Replicate postgres to SQLite on the edge

 477 stars 6 forks Activity

View code

SQLedge
[State: alpha]

SQLedge uses Postgres logical replication to stream the changes in a source Postgres database to a
SQLite database that can run on the edge. SQLedge serves reads from its local SQLite database,
and forwards writes to the upstream Postgres server that it's replicating from.

This lets you run your apps on the edge, and have local, fast, and eventually consistent access to
your data.

 Star Notifications

Code Issues 3 Pull requests Actions Projects Security Insights

 main

The-Alchemist and zknill improved grammar and punctuation in README.md … 15 hours ago 14

README.md

https://github.com/zknill
https://github.com/zknill/sqledge
https://github.com/zknill/sqledge/stargazers
https://github.com/zknill/sqledge/forks
https://github.com/zknill/sqledge/activity
https://github.com/zknill/sqledge/blob/main/etc/sqledge.png?raw=true
https://github.com/login?return_to=%2Fzknill%2Fsqledge
https://github.com/login?return_to=%2Fzknill%2Fsqledge
https://github.com/zknill/sqledge
https://github.com/zknill/sqledge/issues
https://github.com/zknill/sqledge/pulls
https://github.com/zknill/sqledge/actions
https://github.com/zknill/sqledge/projects
https://github.com/zknill/sqledge/security
https://github.com/zknill/sqledge/pulse
https://github.com/zknill/sqledge/commits?author=The-Alchemist
https://github.com/zknill/sqledge/commits?author=zknill
https://github.com/zknill/sqledge/commit/cf037715c113bbdc7cb8802c7ccd7f46fbe18aee
https://github.com/zknill/sqledge/commit/cf037715c113bbdc7cb8802c7ccd7f46fbe18aee
https://github.com/zknill/sqledge/commits/main
https://github.com/zknill
https://github.com/The-Alchemist

SQL generation

The pkg/sqlgen package has an SQL generator in it, which will generate the SQLite insert, update,

delete statements based on the logical replication messages received.

SQL parsing

When the database is started, we look at which tables already exist in the sqlite copy, and make sure
new tables are created automatically on the fly.

Postgres wire proxy

SQLedge contains a Postgres wire proxy, default on localhost:5433 . This proxy uses the local
SQlite database for reads, and forwards writes to the upstream Postgres server.

Compatibility

When running, the SQL statements interact with two databases; Postgres (for writes) and SQLite (for
reads).

The Postgres wire proxy (which forwards reads to SQLite) doesn't currently translate any of the SQL
statements from the Postgres query format/functions to the SQLite format/functions. Read queries
issued against the Postgres wire proxy need to be compatible with SQLite directly. This is fine for
simple SELECT queries, but you will have trouble with Postgres-specific query functions or syntax.

Copy on startup

SQLEdge maintains a table called postgres_pos , this tracks the LSN (log sequence number) of the
received logical replication messages so it can pick up processing where it left off.

If no LSN is found, SQLedge will start a postgres COPY of all tables in the public schema.

Creating the appropriate SQLite tables, and inserting data.

When the replication slot is first created, it exports a transaction snapshot. This snapshot is used for
the initial copy. This means that the COPY command will read the data from the transaction at the
moment the replication slot was created.

Trying it out

1. Create a database

create database myappdatabase;

2. Create a user -- must be a super user because we create a publication on all tables

3. Run the example

4. Connect to the postgres wire proxy

The read will be served from the local database

5. Connect to the local sqlite db

Config

All config is read from environment variables. The full list is available in the struct tags on the fields in
pkg/config/config.go

Releases

No releases published

Packages

create user sqledger with login superuser password 'secret';

SQLEDGE_UPSTREAM_USER=sqledger SQLEDGE_UPSTREAM_PASSWORD=secret
SQLEDGE_UPSTREAM_NAME=myappdatabase go run ./cmd/sqledge/main.go

psql -h localhost -p 5433

$ CREATE TABLE my_table (id serial not null primary key, names text);
$ INSERT INTO my_table (names) VALUES ('Jane'), ('John');

$ SELECT * FROM my_table;

sqlite3 ./sqledge.db

.schema

https://github.com/zknill/sqledge/releases
https://github.com/users/zknill/packages?repo_name=sqledge

No packages published

Contributors 2

zknill zak

The-Alchemist The Alchemist

Languages

Go 100.0%

https://github.com/zknill/sqledge/graphs/contributors
https://github.com/zknill
https://github.com/zknill
https://github.com/The-Alchemist
https://github.com/The-Alchemist
https://github.com/zknill/sqledge/search?l=go

