
AUG. 7, 2023, 3:32 P.M.

Raku: A Language for

Gremlins

By Gremlins, For Gremlins™

Computer Things

I just added a big new section to learntla: Optimizing TLA+

Model Checking. I take a spec and then show 15 different

optimizations, many of them getting a 10x runtime

improvement. Patreon notes here. Besides that I've done

very little writing the last couple weeks. I'm just in a slump: I

sit down to write and the words all come out wrong. It

happens sometimes and there's nothing to do about it but

wait it out.

So instead of working I've been learning Raku.
1
 It originally

got on my radar after I ranted about dynamic languages and

a couple of users told me I'd like Raku. I finally checked it out

last week to see if it'd make a good "calculator language". I

use a hodgepodge of Python, J, Frink, and Excel to do math

and they all have their own big drawbacks, so it'd be nice if

Raku could round them out.

After several days of experiments, I'm at a loss of how to

describe Raku. The best I can come up with is that the

language was designed by a bunch of really intelligent

https://buttondown.email/hillelwayne
https://learntla.com/topics/optimization.html
https://www.patreon.com/posts/notes-on-tla-87093195
https://raku.org/
https://buttondown.email/hillelwayne/archive/i-am-disappointed-by-dynamic-typing/
https://hillelwayne.com/post/j-notation/
https://hillelwayne.com/post/frink/

gremlins. Gremlins who spent a lot of time gathering

feedback from other gremlins.

Weird Operators

Raku has no qualms about using Unicode operators. You

check set membership with ∈. There's also ∉, ∋, and ∌. It's

also fine with alphanumeric infix operators. String repetition

op is x. Function composition is o.

> "a" x 3

aaa

> my &f = &sqrt o &abs

{noise}

> f -3

1.7320508075688772

X gives you the cross product of a list, Xf applies f to each

element of the cross product, Zf does the same with zip.

> <a b c> X <1 2 3>

((a 1) (a 2) (a 3) (b 1) (b 2) (b 3) (c 1) (c 2) (c 3))

> <a b c> Xx <1 2 3>

(a aa aaa b bb bbb c cc ccc)

> <a b c> Zx <1 2 3>

(a bb ccc)

If f is an infix operator, then [f] reduces a list and [\f]

accumulates it:

> [+] <1 2 3 4 5>

15

> [\+] <1 2 3 4 5>

(1 3 6 10 15)

~~ is the "anything goes" matcher.

> "abc" ~~ "abc" # do the strings match?

True

> "abc" ~~ Str # is abc a string?

True

> "abc" ~~ {.chars == 3} # is abc length 3?

True

> so "abc" ~~ /^b/ #does abc start with b?

False

Finally, there's

> 0,1,2...10

(0 1 2 3 4 5 6 7 8 9 10)

> 0,2,4...10

(0 2 4 6 8 10)

> 1,2,4...10

(1 2 4 8)

Defining operators

So you know how some languages let you define infix

operators? Raku lets you also define new circumfix and

postcircumfix operators.

circumfix

sub circumfix:<[∀ zz>($inner){sum($inner)}

> [∀ 1,3,5...10 zz

25

vector inner product!

sub postcircumfix:<| ⟩>(@left, @inside){[+] (@left Z* @inside)}

> <1 2 3>|<4 5 6>⟩

32

In addition to left- and right-associative infix operators, you

can define operators to be chain associative (like how x < y

< z is x < y && y < z) and "list" associative (a op b op c

is op(a, b, c)).

Multiple dispatch

So Raku has "multiple dispatch", meaning that you overload

a function with multiple different type signatures and it will

choose the appropriate one.

@ is for iterable types

multi f($x,@arr) {@arr.map(-> $elem {$elem + $x})}

multi f(@arr, $x) {@arr.map(-> $elem {$elem + $x})}

multi f(@arr1, @arr2) {@arr1 Z+ @arr2}

> f(2, <1 2 3>);

(3 4 5)

> f(<1 2 3>, <3 4 5>)

(4 6 8)

This isn't weird, lots of languages have multiple dispatch.

What is weird is that you can also dispatch based on a

runtime predicate of the value.

multi my_abs(Int $x where {$x > 0}) {$x}

multi my_abs(Int $x) {-$x}

> map &my_abs, <-4 4>

Also the signature of a function is a first-class value, as are

the parameters in the signature.

Miscellaneous Things

If you define a MAIN function, any parameters you give it

will be automatically turned into CLI flags.

Objects have way more preloaded methods than I've seen

in any language, and I used to do Rails. The List object has

methods for getting all permutations, all k-combinations,

and all sliding windows.

Junctions are this weird type-value-thing for doing multiple

comparisons at once. 1|2 expands to any(1, 2), so 1 <

1|2. 1&2 expands to all(1, 2), so 1 !< 1&2.

Oh yeah and you can negate any infix operator by

prefixing it with !.

https://docs.raku.org/type/List
https://docs.raku.org/type/Junction

Raku is the only language I've ever seen that has $kebab-

case names and infix subtraction, I'm guessing because

sigils disambiguate x-y.

The regex syntax isn't backwards compatible with Perl 5.

For thirty years languages followed the PCRE "standard"

and Perl 6 just… threw it all away.

That's just a tiny slice of all the weird Raku features, since

I've only been looking at calculator applications so far. I

haven't even learned about the object system, packages, or

grammars! And even so, I still left out a ton of stuff. Like in a

function body, samewith will call the same function with new

arguments.

I think if I had to maintain a Raku legacy codebase my brain

would explode. I have no idea how people would manage to

write this language In The Large. At the same time, it seems

incredible for programming In The Small. One-off scripts,

computations, personal tooling, all the kinds of things I

wanted to do with it in the first place.

I've also seen some really frustrating things:

1. The documentation is really poor and the heavy reliance

on symbols makes it hard to search for things. I've learned

a lot of poorly-documented languages but Raku is much

bigger and more complex than any of them and it can be

real demotivating.

2. The REPL crashes on Windows if I type in any Unicode. The

compiler is also pretty slow, with even small files taking

half a second or more. Iterating on things is painful.

3. I hate the sigil thing. I spent half an hour debugging a

problem because I wrote $x instead of @x.

https://docs.raku.org/language/regexes
https://docs.raku.org/language/grammar_tutorial

Overall? Maybe I'm just a gremlin at heart, but I think I like

this language and want it to succeed. I assume I'll have a

more balanced picture thoughts after I use it in anger. I just

hope that over time the compile times and documentation

improve.

1. Formerly known as Perl 6. ↩

If you're reading this on the web, you can subscribe here.

Updates are 6x a month. My main website is here.

You just read issue #259 of Computer Things. You can also

browse the full archives of this newsletter.

Your email (you@example.com)

Subscribe

Share on Facebook Share on LinkedIn

Brought to you by Buttondown, the easiest way to start and grow your newsletter.

https://buttondown.email/hillelwayne
https://www.hillelwayne.com/
https://buttondown.email/hillelwayne/archive/
https://www.facebook.com/sharer/sharer.php?u=https://buttondown.email/hillelwayne/archive/raku-a-language-for-gremlins/&title=Raku%3A%20A%20Language%20for%20Gremlins
https://www.linkedin.com/shareArticle?mini=true&url=https://buttondown.email/hillelwayne/archive/raku-a-language-for-gremlins/
https://buttondown.email/

