
Mofi New Pricing Log in

Snappy UIs With WebAssembly and Web Workers

Published: 2023�08�07

Our web app allows users can change the length of a song or find loops
present in it for infinite listening, remixing, or for their next next video edit or
performance. After uploading a song, there is an initial server-side analysis
step after which the audio can be manipulated completely in the browser.
Users can alter the desired length or mark sections of audio to prefer or avoid
which will regenerate results. To make these manipulations responsive and
snappy, computations happen client-side and do not need another network
call (which would introduce additional latency). To make this possible, we rely
on using a WebAssembly binary executed inside of a Web Worker (several of
them actually, running in parallel). In this post, we will go over some more
details of how this works.

Running Fast(er) With WebAssembly

WebAssembly allows web developers to use low-level code delivered in a
binary format that runs at speeds you would not be able to achieve with just
JavaScript. WebAssembly (or Wasm for short) describes a low-level assembly-
like language that can be targeted from a higher-level language like C, C��, or
Rust. The nice thing is that you get to choose which language you want to use,
as long as you can find a way to compile it down to a Wasm binary!

We use AssemblyScript which allows us to write our high-level code in
TypeScript (strongly typed JavaScript). Since the rest of our client-side code
is also written in TypeScript (which in turn gets compiled to “regular”
JavaScript), this allows us to share code between the code delivered as part
of our UI (using JS� and the binary (using Wasm). We get to share type
definitions of the data being passed in and out of the compiled binary and
some interop that makes it easier to pass data back and forth. While code
written with AssemblyScript looks very similar to TypeScript, it needs some
modifications before being able to be compiled with AssemblyScript (by
defining more granular types for example).

AssemblyScript code might look something like the following:

exportexport functionfunction computecompute((arrayarray:: StaticArray StaticArray<<f64f64>>,, target target:: i32 i32)):: Resul Resul

constconst total total == 1010;;

constconst sum sum == 00;;

forfor ((letlet i i == 00;; i i << total total;; i i++++)) {{

sum sum +=+= array array[[ii]];;

}}

Feedback

https://mofi.loud.red/
https://mofi.loud.red/edit
https://mofi.loud.red/pricing
https://mofi.loud.red/login
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/WebAssembly
https://www.assemblyscript.org/

returnreturn {{ sum sum }};;

}}

Here, we are writing a function that sums up the first 10 items from array and
returns it wrapped in an object. In our code, we return more than just one item
inside of this object. The nice thing with AssemblyScript is that it will take care
of properly passing this structured data across the JS/Wasm boundary.

Keeping Things Responsive With Web Workers

While the Wasm binary is faster than a JavaScript implementation would be, it
still takes a non-neglible time to run. If we were to just call the compute
function inside of our Svelte front-end, we would run it in the main thread and
lock up the UI, causing a bad user experience as the webpage would appear
frozen. To fix this, we run that code inside of a Web Worker. Doing this will
allow us to run the search algorithm in a separate thread so the main thread is
available to respond to the user.

In our case, to perform a search, a worker needs some context on the
structure of the song. We first initialize a worker with the song analysis results
from the server (this requires us to send data from the main thread into the
worker thread), then ask it to execute a search with the target length. Since
this context only changes when the user changes the song they are working
on, we can reuse a worker given we are editing the same song and just need
to vary the target duration or the preferences.

Since that code runs in separate execution context in a separate thread, how
can we implement cross-thread communication? Using the Channel Messaging
API’s postMessage method! This method allows us to send a message across
the thread boundary.

Our code that manages the worker looks something like the following:

importimport Worker Worker fromfrom "./worker?worker""./worker?worker";;

constconst worker worker == newnew WorkerWorker(());;

// intialize the worker// intialize the worker

workerworker..postMessagepostMessage(({{

typetype:: "populate""populate",,

datadata:: newnew Float64ArrayFloat64Array((searchContextsearchContext)),,

}}));;

// wait for worker to be initialized (see "loaded" event below)// wait for worker to be initialized (see "loaded" event below)

functionfunction searchsearch((

callbackcallback:: ((ratioratio:: Result Result)) =>=> voidvoid,,

targettarget:: numbernumber,,

onProgressonProgress??:: ((ratioratio:: numbernumber)) =>=> voidvoid,,

)) {{

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API

workerworker..onmessageonmessage == (({{ data data:: {{ type type,, data data }} }})) =>=> {{

ifif ((type type ====== "finish""finish")) {{

callbackcallback((data data asas Result Result));;

// check if there are waiting tasks// check if there are waiting tasks

}} elseelse ifif ((type type ====== "progress""progress")) {{

onProgressonProgress?.?.((datadata));;

}}

}};;

// execute search// execute search

workerworker..postMessagepostMessage(({{

typetype:: "process""process",,

datadata:: {{ target target }},,

}}));;

}}

The worker.ts referenced above (the ?worker suffix is a Vite feature) has
some code to handle the messages from the main thread and copy the search
context into its local memory and then run our WebAssembly code when
needed:

letlet cachedData cachedData:: Float64Array Float64Array;;

onmessageonmessage == asyncasync (({{ data data:: {{ type type,, data data }} }}:: {{ data data:: {{ type type:: stringstring;;

constconst {{ compute compute }} == awaitawait importimport(("./wasm/assembly""./wasm/assembly"));;

ifif ((type type ====== "populate""populate")) {{

cachedData cachedData == data data;;

postMessagepostMessage(({{

typetype:: "loaded""loaded",,

}}));;

}} elseelse ifif ((type type ====== "process""process")) {{

constconst {{ target target }} == data data;;

postMessagepostMessage(({{

typetype:: "finish""finish",,

datadata:: computecompute((cachedDatacachedData,, target target)),,

}}));;

}}

}};;

Note: as pointed out on Hacker News, if you are running Firefox, the dynamic
import above requires Firefox 113 or newer.

As mentioned before, keeping a copy of the search result is possible since the
analysis context required is shared across searches. This avoids some

https://vitejs.dev/guide/features.html#web-workers
https://news.ycombinator.com/item?id=36489267
https://bugzilla.mozilla.org/show_bug.cgi?id=1540913

overhead when the user initializes a new search (by altering the target length
or region preferences) by avoiding having to copy it in for every search.

Reusing Workers

In Mofi, users get to choose from multiple results of generated songs. Since
these searches can run in parallel and we want to get results shown to the
user as quickly as possible, we run multiple instances of Web Workers at the
same time. This allows us to have results “trickle in” as each worker finishes
processing.

We don’t want to run too many workers at once, however: after we reach the
number of physical cores, the cost of switching between threads starts to
outweight the benefits of parallelization and computation incurs a
performance hit. To manage this, we use a pool of workers. When a new
request comes in to look for a result, we try to find a worker that will handle
the request:

If we haven’t filled the pool of workers yet, we have space to create one,
so we initialize a new instance of the worker and populate it with data.
Once it has finished initialization, we can send over the request.
If there is an idle worker in our pool, we take one and let it perform the
search. The advantage of this is that reusing the worker allows us to skip
initialization since it already has the context needed to perform the
search.
If there is no idle worker, we add the request along with a callback to a
list of waiting tasks. Once a worker finishes a task, the scheduler takes
the next task off of the queue and processes it.

Having a pool of workers also let’s us stop all searches by terminating all
workers:

exportexport functionfunction terminateterminate(()) {{

waitingTasks waitingTasks == [[]];;

busyWorkersbusyWorkers..forEachforEach((((workerworker)) =>=> worker worker..terminateterminate(())));;

busyWorkers busyWorkers == [[]];;

}}

This happens when the user issues a new search. At this point, all running
workers are looking for outdated results so we don’t need them anymore.

Tip: Progress Updates

A worker can only return data once completed, but we also want to show a
progress indicator even when its task has not finished. To do this, inside of the
worker code, we create a global onProgress helper function that allows us to
send a message to the main thread like this:

((globalThis globalThis asas anyany))..onProgressonProgress == ((ratioratio:: numbernumber)) =>=> {{

postMessagepostMessage(({{

typetype:: "progress""progress",,

datadata:: ratio ratio,,

}}));;

}};;

Then, inside the AssemblyScript code, we can add this:

@@externalexternal(("env""env",, "onProgress""onProgress"))

exportexport declaredeclare functionfunction onProgressonProgress((ratioratio:: numbernumber)):: voidvoid;;

which allows us to “import” the function and call it inside of the Wasm binary
and send incremental updates before returning the final result:

++ import { onProgress } from "./glue"; import { onProgress } from "./glue";

export function compute(array: StaticArray<f64>, target: i32): Resulexport function compute(array: StaticArray<f64>, target: i32): Resul

const total = 10;const total = 10;

const sum = 0;const sum = 0;

for (let i = 0; i < total; i++) {for (let i = 0; i < total; i++) {

sum += array[i];sum += array[i];

++ onProgress(i / total);onProgress(i / total);

}}

return { sum };return { sum };

}}

This is a simplified example and this loop would finish fast, but in the case of
long-running loop iterations the progress updates will be more beneficial.

Wrapping Up

Using WebAssembly and Web Workers, we are able to shift the iterative aspect
of Mofi’s audio manipulation to the client to make the experience more
responsive and snappy. This project was exciting for me to build because it
got me using novel web technologies to build a performant application that
mostly runs in the browser. In the future, I hope to be able to analyze the audio
in the browser too, but it looks difficult to do at this stage.

Thank you for reading, and if you haven’t already, please give Mofi a try!

Try Mofi →
More blog entries →

About Blog Help API Affiliates Legal © 2023 Florian

https://mofi.loud.red/
https://mofi.loud.red/blog
https://mofi.loud.red/about
https://mofi.loud.red/blog
https://mofi.loud.red/help
https://mofi.loud.red/api
https://mofi.loud.red/affiliate
https://mofi.loud.red/legal
https://florian.janke.me/

