
iliana etaoin

August 6, 2023

Getting my library cards onto my
phone the hard way

Our local libraries, The Seattle Public Library and the King County Library System, issue

pieces of plastic with barcodes printed on the back assigned to your borrower

account. These cards are not strictly necessary in 2023; most everything at Seattle

libraries is self-service, including circulation, and these self-service entrypoints usually

have a way to type in a library barcode manually. But having the barcode is far more

convenient, and I’d like to have it without having to keep yet another plastic card I

rarely use in my wallet.

So I put it on my phone, in my iPhone’s Wallet app. This became extremely silly

extremely quickly, so I’ve decided to document it here for myself and others.

A brief introduction to passes

The Wallet app can manage many things: payment cards,

government/employee/student IDs, house/car/hotel room keys; none of these were

part of what Wallet, initially called Passbook, could do at its 2012 launch. At that time,

Passbook only managed “passes”.

Apple’s documentation on passes covers this in more detail, but they are self-

contained zip files full of JSON and PNGs designed to be distributed through email or

the web from a vendor to its user. If you have a pass on your phone, you can usually

go to Pass Details and find a share icon in the top right, allowing you to send the

.pkpass file to somewhere you can unzip it and inspect it.

The contents are pretty simple. There’s a specific list of supported images, there’s a

`pass.json` file which describes all of the non-image content of the pass, there’s a

`manifest.json` file which lists the SHA-1 checksum of all the other files, and a

`signature` which is an S/MIME signature of the contents of the `manifest.json`.

https://iliana.fyi/
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/PassKit_PG/index.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/PassKit_PG/Creating.html#//apple_ref/doc/uid/TP40012195-CH4-SW52

Our first interesting problem is one of barcode formats. Passes support four types of

barcodes: QR code, PDF417 (commonly used on United States driver licenses), Aztec

Code (used for boarding passes by the airline industry), and Code 128 (the only

supported linear symbology). My library card uses… [stares at Wikipedia for half an

hour] Codabar, widely used in libraries , and perhaps one of the cutest barcode

symbologies (and names) I’ve ever seen. It’s possible that the barcode scanners at the

library support other linear symbologies, but Codabar is the only one I know guaranteed

to work at all of them. So we will need to fake it by providing some image that

functions as a scannable barcode.

Our second interesting problem, which is a much worse, “oh no”-level problem: for some

reason, passes are cryptographically signed, and they have to be signed with a key

known to one of Apple’s certificate authorities. Cryptographically signing these files

makes some sense when you consider that passes were designed to get automatic

updates from their vendors; for example, your boarding pass for a flight reflecting gate

changes or changing your seat assignment.

If you are already an Apple developer you can get yourself a pass signing key pretty

trivially, but I am not, and I do not intend to drop $99 on this.

Perfection is the enemy of something or other

There are other people who are already Apple developers who have made various apps

for designing passes. They are… passable? Unfortunately I am a perfectionist.

For one thing, there is the matter of the logo in the top left of the pass. Apple has

designed this somewhat flexibly, with a maximum height of 50 device-independent

pixels, but a square logo with text to the right side is going to most comfortably fit at

about 40 pixels tall. Pass developers are expected to provide correctly-sized logos at

`logo.png`, `logo@2x.png`, `logo@3x.png` for different device pixel ratios, but these

apps tend to let you select a single logo and not give you any control over how it’s

scaled. If you give it a 40-pixel image, it’ll be blurry on any currently-supported iPhone;

if you give it an 80-pixel image, it’ll be too large. Not great!

For another thing, I’d really like to have the screen be brighter as I open the pass.

Passes with normal, supported barcodes do this to support scanners that need better

contrast. To me, the ideal situation here is to trick iOS into making the screen brighter

1

2

https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/PDF417
https://en.wikipedia.org/wiki/Aztec_Code
https://en.wikipedia.org/wiki/Code_128
https://en.wikipedia.org/wiki/Codabar

without actually having a non-functional barcode present. I’m not going to be able to

get away with this kind of JSON fuzzing without digging into the JSON myself.

And, these apps tend to be free to download, but only let you save a limited number of

passes to Wallet before asking you to pay up. I am not here to judge the developers for

doing this but I am probably also not going to pay for your app unless it does what I

want it to (and unfortunately what I want is kind of extreme).

Finding a key

Well, I did just download half a dozen free-to-start pass generator apps.

You could make these one of two ways. Probably the “correct” way is to have some

web service which performs the signing, so that you don’t ship a private key with the

application itself. But surely one of these apps I’ve downloaded lets you generate

passes offline? Sometimes you want the app to work without having to also maintain a

web service; that sounds like a one-way ticket to dealing with a ton of bad reviews

and refunds when it inevitably goes down.

I turned on Airplane Mode, turned off WiFi, and tried them all. Sure enough, at least one

does. I’m not going to draw attention to the specific app I used in this post because I

don’t want their key to get revoked . But it was kind of funny how simple the process

was:

1. Download the app on my Mac, since Apple silicon Macs let you run iOS apps.

2. In the wrapped iOS app bundle, observe that there is a very obvious `.p12` file.

3. Run `strings` on the main binary and look for anything that might be a password

(as PKCS#12 files require an import password).

And, well:

$ openssl pkcs12 -info -in [redacted].p12 -legacy -nodes

Enter Import Password:

MAC: sha1, Iteration 1

MAC length: 20, salt length: 8

PKCS7 Encrypted data: pbeWithSHA1And40BitRC2-CBC, Iteration 2048

Certificate bag

Bag Attributes

3

 friendlyName: Pass Type ID: [redacted]

 localKeyID: [redacted]

subject=UID = [redacted], CN = Pass Type ID: [redacted], OU = [redacted], O

issuer=CN = Apple Worldwide Developer Relations Certification Authority, OU

...

We also need a certificate chain; this certificate is signed with an intermediate. The app

needs it too, so it’s probably somewhere in the bundle, but the certificate contains

within its X.509 extension fields the URL to download the intermediate if you need it

(you can view a certificate’s various fields with `openssl x509 -noout -text -in

whatever.pem`).

Laying out the pass

First we need to pick a pass style out of “boarding pass”, “coupon”, “event ticket”,

“generic”, or “store card”. We want a layout that lets us put a large horizontal image

across the pass somewhere. This limits us to layouts that support the “strip” image:

coupon, event ticket, or store card. Out of these three, the store card is most

skeuomorphic to our physical library card.

Let’s type up the start of a `pass.json`. The documentation for this file is found at the

PassKit Package Format Reference.

{

 "passTypeIdentifier": "[redacted]",

 "teamIdentifier": "[redacted]",

 "formatVersion": 1,

 "serialNumber": "whatever",

 "organizationName": "me!",

 "logoText": "The Seattle Public Library",

 "description": "Library Card",

 "storeCard": {

 "headerFields": [],

 "primaryFields": [],

 "backFields": [],

 "secondaryFields": [],

 "auxiliaryFields": []

 },

 "backgroundColor": "rgb(255, 255, 255)",

https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/PassKit_PG/Creating.html#//apple_ref/doc/uid/TP40012195-CH4-SW45
https://developer.apple.com/library/archive/documentation/UserExperience/Reference/PassKit_Bundle/Chapters/Introduction.html

 "foregroundColor": "rgb(0, 0, 0)",

 "sharingProhibited": false

}

The `passTypeIdentifier` and `teamIdentifier` must match the `UID` and `OU`

fields, respectively, of the certificate subject you got from Apple and/or found lying

around. `serialNumber` needs to be unique for each pass you generate with the same

`passTypeIdentifier`. `organizationName` is ostensibly supposed to be who made

and signed the pass, but if you’re never distributing the pass then it probably doesn’t

matter.

Now for some images. `icon.png` is required but is not shown on the pass itself.

`logo.png` is the logo displayed at the top left. I generated three logo files: a 40×40

`logo.png`, an 80×80 `logo@2x.png`, and a 120×120 `logo@3x.png`; then I copied

`logo@3x.png` to `icon.png`.

Finally, we’ll need the `strip.png`, which will contain our pre-generated barcode.

Generating the barcode

Fortunately iOS scales and crops the `strip.png` we generate to fit whatever size

box it is on a device, so we don’t need to worry about making three different versions

of it.

Both my library cards use “A” and “D” as the start and stop symbols. If you already

have a barcode scanner handy this is the easiest way to figure out what your start and

stop symbols are, but you can also compare the beginning and end of the barcode

against the symbology table on Wikipedia by eye pretty easily.

There aren’t many ready-to-use Codabar generators online, but the format is pretty

simple to implement yourself. While prototyping I used the Barcoders library for Rust to

generate an SVG, then tweaked the SVG and exported a PNG. After some

experimentation I settled on the following layout (where 1 unit is the width of a narrow

bar):

The barcode height is, in units, twice the number of total symbols (including the

start and stop symbols) in the barcode. (For example: a 13-digit barcode number is

15 symbols, and so I made my barcode height 30 units tall.)

https://en.wikipedia.org/wiki/Codabar#Encoding
https://lib.rs/crates/barcoders

15 units of quiet space is placed before the start and after the end of the barcode.

(Various reader documentation I’ve seen suggests 10 units is sufficient but I had a

harder time scanning it with my fancy 2D barcode scanner.)

50 units of padding are placed above and below the barcode. This is overkill, but

helps ensure the image is cropped on the top and bottom, not on the left and right.

Each unit is scaled up to 8 pixels to ensure iOS is always scaling the image down.

(This makes the final image size 1040 pixels tall and, for my example 15-symbol

barcode, the barcode 240 pixels tall.)

Codabar has such a simple encoding that I felt an overwhelming urge to write a 69-line

shell script that generates a bitmap of an encoded Codabar barcode in the above

layout:

#!/usr/bin/env bash

if [[$# -ne 2]]; then

 >&2 echo "usage: $0 BARCODE OUTPUT"; exit 1

fi

scale_factor=8 # needs to be multiple of 4 for BMP reasons

quiet_space=15

vert_padding=50

draw_black() { head -c $(($1 * scale_factor * 3)) /dev/zero; }

draw_white() { draw_black "$1" | LANG=C tr '\0' '\377'; }

encode_long() {

 for __x in 0 8 16 24; do

 echo -en "\x$(printf %x $((($1 >> __x) % 256)))"

 done

}

workdir=$(mktemp -d)

trap 'rm -rf "$workdir"' EXIT

{

 draw_white $quiet_space

 echo -n "$1" | while read -r -N1 symbol; do

 case $symbol in

 0|2|6|C|*|B|N|.) bars=0001 ;;&

 1|-|7|D|E|/) bars=0010 ;;&

 4|$|8|A|T|:) bars=0100 ;;&

 5|9|3|+) bars=1000 ;;&

 0|1|4|5) spaces=001 ;;

 2|-|$|9) spaces=010 ;;

 6|7|8|3) spaces=100 ;;

 C|*|D|E|A|T) spaces=011 ;;

 B|N) spaces=110 ;;

 .|/|:|+) spaces=000 ;;

 *) >&2 echo "$0: warning: ignoring symbol $symbol"; continue ;;

 esac

 for i in {0..3}; do

 draw_black $((${bars:$i:1} + 1))

 draw_white $((${spaces:$i:1} + 1))

 done

 done

 draw_white $((quiet_space - 1))

} >"$workdir/line"

image_width=$(($(wc -c <"$workdir/line") / 3))

barcode_height=$((${#1} * 2))

image_height=$(((barcode_height + vert_padding * 2) * scale_factor))

{

 # BMP header

 printf 'BM'

 encode_long $((image_width * image_height * 3 + 54))

 printf '\0\0\0\0\x36\0\0\0\x28\0\0\0'

 encode_long $image_width

 encode_long $image_height

 printf '\x01\0\x18\0\0\0\0\0'

 encode_long $((image_width * image_height * 3))

 head -c 16 /dev/zero

 draw_white $((image_width * vert_padding)) # top vertical padding

 lines=$((barcode_height * scale_factor))

 while ((lines-- > 0)); do cat "$workdir/line"; done

 draw_white $((image_width * vert_padding)) # bottom vertical padding

} >"$workdir/barcode.bmp"

if not on macOS, replace with your image conversion tool of choice

sips -s format png "$workdir/barcode.bmp" --out "$2"

Writing this script’s output to `strip.png` is all we need.

Adding the barcode number

I also wanted the barcode number to display under the barcode; this is simple enough

to do with the secondary fields:

 "secondaryFields": [

 {

 "key": "number",

 "label": "CARD NUMBER",

 "value": "6942069420"

 }

],

Faking the barcode UX the rest of the way

When a user selects a barcoded pass, the phone screen gets brighter to assist with

scanners. iOS doesn’t think we have a barcode yet. I hoped that specifying an empty

barcode would do the trick, and… yeah! It does! Specifying this in the top level keys of

`pass.json` works:

 "barcodes": [

 {

 "message": "",

 "format": "PKBarcodeFormatCode128",

 "messageEncoding": "iso-8859-1"

 }

],

It’s the perfect workaround: no barcode is displayed at the bottom of the pass, but the

phone acts like there’s a barcode present.

Signing and packaging the pass

Once all our files are in place, we need to generate the `manifest.json`, which is an

object with filenames as keys and SHA-1 checksums as values. I wrote a terrifying jq

filter to generate the manifest for me:

sha1sum *.png pass.json | \

 jq -Rs 'split("\n") | [.[] | select(. != "") | split(" ") | {(.[1]):

Now we need to sign the manifest, placing the signature at `signature`. This is done

with the `openssl smime` command.

openssl smime -binary -sign \

 -signer pkpass.crt -inkey pkpass.key -certfile wwdrg4.pem \

 -in manifest.json -outform der -out signature

It’s possible to use whatever signing time you like with the `-attime` option, so if the

certificate you got from Apple and/or found lying around is expired, you can still sign

with it. The `-attime` option takes a UNIX epoch.

And now, we create a zip!

zip -r out.pkpass *.png pass.json manifest.json signature

macOS comes with a pass previewer tool, so you can open this pass to check that it is

valid and mostly looks right. (If it’s not valid, look for an error in Console.app.) The

previewer isn’t 100% accurate, but it does have a button to send it to your phone via

iCloud, which is pretty cool. You can also get it onto your phone in whatever manner is

convenient.

4

Not my real card number, sadly.

I will note that I have not yet tested this pass in a real library yet, but my barcode

scanner can read it off my phone just as well as it can read it from my physical plastic

card if I turn the screen brightness all the way up (yes, even further than the zero-

length barcode workaround causes the screen to get brighter).

Closing thoughts

I think it’s pretty neat that the pass specification has remained pretty much unchanged

in a decade. But I wish, like many things within the Apple ecosystem, that this didn’t

require a $99 USD/year membership to get a certificate in order to sign an otherwise

harmless pile of PNGs and JSON. There’s a few features you can use in passes that I’m

glad require signing, but nothing I did here should require it, and I hope that changes

someday.

Also I think Apple should add Codabar support to Wallet. I’m not aware of any library

that supports using a digital form of a library card in-person, and I think with some

tweaks the platform could support libraries without requiring an audit to ensure every

barcode scanner across the system can support Code 128.

And blood banks? ↩︎1

`@3x` was news to me! Apparently some newer phones have a 3× ratio now. ↩︎2

Given that most of these kinds of apps do not make the passes updatable via the internet, that

these keys are limited to signing passes, and that the keys are specifically used in “make

whatever pass you want” apps, I do not think there’s any reason to revoke the key I found.

Unfortunately I do not trust Apple will accept this reasoning. ↩︎

3

Astute observation, Michael. ↩︎4

https://stackoverflow.com/questions/66989389/consequences-of-the-expiration-of-the-signing-certificate-for-a-already-issued-p/66989932#comment130045743_66989932

