
supabase / postgres_lsp Public

A Language Server for Postgres

supabase.com

 MIT license

 313 stars  3 forks  Activity

View code

Postgres Language Server
A Language Server for Postgres. Not SQL with flavors, just Postgres.

Status

🚧 This is in active development and is only ready for collaborators. The majority of work is still
ahead, but we've verified that the approach works. We're making this public so that we can develop it
in the open with input from the community.

 Star Notifications

Code Issues Pull requests 2 Discussions Actions Security Insights

 main 

kiwicopple Merge pull request #12 from shuvroroy/update-gitignore … 14 minutes ago  46

README.md

https://github.com/supabase
https://github.com/supabase/postgres_lsp
https://supabase.com/
https://github.com/supabase/postgres_lsp/blob/main/LICENSE
https://github.com/supabase/postgres_lsp/stargazers
https://github.com/supabase/postgres_lsp/forks
https://github.com/supabase/postgres_lsp/activity
https://github.com/supabase/postgres_lsp/blob/main/docs/images/pls-github.png
https://github.com/login?return_to=%2Fsupabase%2Fpostgres_lsp
https://github.com/login?return_to=%2Fsupabase%2Fpostgres_lsp
https://github.com/supabase/postgres_lsp
https://github.com/supabase/postgres_lsp/issues
https://github.com/supabase/postgres_lsp/pulls
https://github.com/supabase/postgres_lsp/discussions
https://github.com/supabase/postgres_lsp/actions
https://github.com/supabase/postgres_lsp/security
https://github.com/supabase/postgres_lsp/pulse
https://github.com/supabase/postgres_lsp/commits?author=kiwicopple
https://github.com/supabase/postgres_lsp/commit/3e796ba7fc3d37ff060cb4d8cc90be765581a5ee
https://github.com/supabase/postgres_lsp/pull/12
https://github.com/supabase/postgres_lsp/commit/3e796ba7fc3d37ff060cb4d8cc90be765581a5ee
https://github.com/supabase/postgres_lsp/commit/3e796ba7fc3d37ff060cb4d8cc90be765581a5ee
https://github.com/supabase/postgres_lsp/commits/main
https://github.com/kiwicopple


Features

The Language Server Protocol is an open protocol between code editors and servers to provide code
intelligence tools such as code completion and syntax highlighting. This project implements such a
language server for Postgres, significantly enhancing the developer experience within your favorite
editor by adding:

Semantic Highlighting

Syntax Error Diagnostics

Show SQL comments on hover

Auto-Completion

Code actions such as Execute the statement under the cursor , or Execute the current 

file

Configurable Code Formatting

... and many more

Motivation

Despite the rising popularity of Postgres, support for the PL/pgSQL in IDEs and editors is limited.
While there are some generic SQL Language Servers  offering the Postgres syntax as a "flavor"
within the parser, they usually fall short due to the ever-evolving and complex syntax of PostgreSQL.
There are a few proprietary IDEs  that work well, but the features are only available within the
respective IDE.

This Language Server is designed to support Postgres, and only Postgres. The server uses
libpg_query, therefore leveraging the PostgreSQL source to parse the SQL code reliably. Using
Postgres within a Language Server might seem unconventional, but it's the only reliable way of
parsing all valid PostgreSQL queries. You can find a longer rationale on why This is the Way™ here.
While libpg_query was built to execute SQL, and not to build a language server, any shortcomings
have been successfully mitigated in the parser  crate. You can read the commented source code

for more details on the inner workings of the parser.

Once the parser is stable, and a robust and scalable data model is implemented, the language server
will not only provide basic features such as semantic highlighting, code completion and syntax error
diagnostics, but also serve as the user interface for all the great tooling of the Postgres ecosystem.

Roadmap

This is a proof of concept for building both a concrete syntax tree and an abstract syntax tree from a
potentially malformed PostgreSQL source code. The postgres_lsp  crate was created to prove that
it works end-to-end, and is just a very basic language server with semantic highlighting and error
diagnostics. Before further feature development, we have to complete a bit of groundwork:

[1]

[2]

https://microsoft.github.io/language-server-protocol/
https://github.com/pganalyze/libpg_query
https://pganalyze.com/blog/parse-postgresql-queries-in-ruby
https://github.com/supabase/postgres_lsp/blob/main/crates/parser/src/lib.rs


1. Finish the parser
The parser works, but the enum values for all the different syntax elements and internal
conversations are manually written or copied, and, in some places, only cover a few
elements required for a simple select statement. To have full coverage without possibilities
for a copy and paste error, they should be generated from pg_query.rs  source code. (#4)

There are a few cases such as nested and named dollar quoted strings that cause the
parser to fail due to limitations of the regex-based lexer. Nothing that is impossible to fix, or
requires any fundamental change in the parser though.

2. Implement a robust and scalable data model
This is still in a research phase

A great rationale on the importance of the data model in a language server can be found
here

rust-analyzer s base-db  crate will serve as a role model

The salsa  crate will most likely be the underlying data structure

3. Setup the language server properly
This is still in a research phase

Once again rust-analyzer  will serve as a role model, and we will most likely implement

the same queueing and cancellation approach

4. Implement basic language server features
Semantic Highlighting

Syntax Error Diagnostics

Show SQL comments on hover

Auto-Completion

Code Actions, such as Execute the statement under the cursor , or Execute the 
current file

... anything you can think of really

5. Integrate all the existing open source tooling
Show migration file lint errors from squawk

Show plpsql lint errors from plpgsql_check

6. Build missing pieces
An optionated code formatter (think prettier for PostgreSQL)

7. (Maybe) Support advanced features with declarative schema management
Jump to definition

... anything you can think of really

Installation

- This is not ready for production use. Only install this if you want to help with dev

https://github.com/supabase/postgres_lsp/pull/4
https://matklad.github.io/2023/05/06/zig-language-server-and-cancellation.html
https://github.com/rust-lang/rust-analyzer/tree/master/crates/base-db
https://github.com/salsa-rs/salsa
https://github.com/sbdchd/squawk
https://github.com/okbob/plpgsql_check


Neovim

Add the postgres_lsp executable to your path, and add the following to your config to use it.

Contributors

psteinroe (Maintainer)

Acknowledgments

rust-analyzer for implementing such a robust, well documented, and feature-rich language
server. Great place to learn from.

squawk and pganalyze for inspiring the use of libpg_query.

Footnotes

Releases

No releases published

Sponsor this project

require('lspconfig.configs').postgres_lsp = {

  default_config = {
    name = 'postgres_lsp',

    cmd = {'postgres_lsp'},

    filetypes = {'sql'},

    single_file_support = true,
    root_dir = util.root_pattern 'root-file.txt'

  }

}

lsp.configure("postgres_lsp", {force_setup = true})

1. Generic SQL Solutions: sql-language-server, pgFormatter, sql-parser-cst ↩

2. Proprietary IDEs: DataGrip ↩

 Sponsor

https://github.com/psteinroe
https://github.com/rust-lang/rust-analyzer
https://github.com/sbdchd/squawk
https://pganalyze.com/
https://github.com/supabase/postgres_lsp/releases
https://github.com/joe-re/sql-language-server
https://github.com/darold/pgFormatter/tree/master
https://github.com/nene/sql-parser-cst
https://www.jetbrains.com/datagrip/


Learn more about GitHub Sponsors

Packages

No packages published

Contributors 4

psteinroe Philipp Steinrötter

kiwicopple Copple

brncsk Ádám Barancsuk

shuvroroy Shuvro Roy

Languages

Rust 100.0%

https://github.com/sponsors
https://github.com/orgs/supabase/packages?repo_name=postgres_lsp
https://github.com/supabase/postgres_lsp/graphs/contributors
https://github.com/psteinroe
https://github.com/psteinroe
https://github.com/kiwicopple
https://github.com/kiwicopple
https://github.com/brncsk
https://github.com/brncsk
https://github.com/shuvroroy
https://github.com/shuvroroy
https://github.com/supabase/postgres_lsp/search?l=rust

