
Relay-style GraphQL
Published on 7/31/2023

graphql relay react javascript

View this article's source code

Table of Contents
Shifting Goals

Some �Optional) History

Highlights of Relay-style GraphQL

Fragment Collocation

An example Relay component

Benefit #1� Preventing over-fetching

Benefit #2� Preventing under-fetching

Benefit #3� Your components are easier to reason about

Benefit #4� Improved TypeScript types

Benefit #5� Easily re-fetch just your component's data

Benefit #6� Your component can fetch different data, depending on context

Benefit #7� Better GraphQL APIs

Benefits Summary

Data Fetching

Easy, pretty-good performance

Medium-effort, better performance

High-effort, best-possible performance

Persisted Queries

React Suspense Support

Developer Experience

@required fields

Language Server Protocol / VS Code Extension

And more!

What's Not Great

FAQ

https://alan.norbauer.com/tags/graphql
https://alan.norbauer.com/tags/relay
https://alan.norbauer.com/tags/react
https://alan.norbauer.com/tags/javascript
https://github.com/altano/alan.norbauer.com/tree/main/src/content/articles/relay-style-graphql/index.mdx

Q� Why do I need Relay-style GraphQL if …

Q� Will Relay fall apart …

Q� How do you unit test …

Q� Do collocated fragments ever result in conflicts …

Q� Will Relay take away control I have over …

”The future Relay-style GraphQL is already here – it’s just not evenly

distributed.”

� William Gibson, probably

“Relay-style GraphQL” is an opinionated way of consuming GraphQL in a React

application, and probably better than whatever you’re currently doing. It follows
the ideas pioneered by Meta’s open-source GraphQL library, Relay.

Relay does not have a monopoly on these ideas and you can get pretty far writing

Relay-style GraphQL with frameworks like Apollo. Conversely, you can write old

school GraphQL in Relay if you try hard enough. Think of this term as defining what

most GraphQL code looks like written in a modern version of Relay vs. what most

other GraphQL code looks like today, regardless of what’s technically possible.

Shifting Goals
Here’s a comparison of the high-level goals we had back in 2015 vs. the ones

Relay-style GraphQL is trying to solve today:

GraphQL in 2015 Relay-style GraphQL

A declarative language for querying

data

More flexible than REST, but BE is

more exposed

Prevents some over-fetching

Performance is ????????????

UI components can declare their

data dependencies

Safer, faster, and more locked-

down than REST

Never under or over-fetches

Best-possible performance

1

#

https://relay.dev/

GraphQL in 2015 Relay-style GraphQL
Brings back schemas and type safety

(that REST took away)

Better developer experience

Even better type safety, molded to

your components

Amazing developer experience

We’ll talk about how you might achieve those goals, but first …

Some �Optional) History
Meta started GraphQL in 2012 and open-sourced it in 2015. Before GraphQL there

was REST, and before that we had SOAP. GraphQL was motivated by a desire to

build mobile applications with something better than a REST backend.

Since �2015 there have been two parallel tracks of evolution (within the web UI

community) with surprisingly little cross-pollination:

The open-source community, dominated by the Apollo library

Meta/Meta’s (also open-source) Relay library

The open-source community has improved GraphQL, such as all the amazing work

The Guild has done, but the way you use Apollo has remained fundamentally the

same since its first release in 2016. Major advancements are slow-going (e.g.

useFragment is still experimental) and adoption of some great advancements (e.g.

the VS Code Plugin) seem spotty to me.

While Meta’s adoption of GraphQL on mobile was an immediate success, it did a

much worse job than open-source at embracing its own technology on the web,

where it took 10 years to bring it to facebook.com. There were several failed

attempts, each failure resulting in a rethinking of the tech stack (e.g. Relay), until

eventually succeeding with an approach that looks very different than both where

it started and where most of the industry is today.

The fruits of Meta’s struggles, plus the lessons learned in open-source, are what

I’m dubbing “Relay-style GraphQL.” Not everyone needs all the parts of Relay-style

#

https://www.apollographql.com/
https://relay.dev/
https://the-guild.dev/
https://www.apollographql.com/docs/react/api/react/hooks-experimental/#usefragment
https://www.apollographql.com/docs/devtools/editor-plugins/

GraphQL, especially not the best-possible performance and backwards

compatibility, and all the infrastructure and tooling complexity that entails, but

most of the other advancements are extremely relevant to any application.

Highlights of Relay-style
GraphQL
Relay-style GraphQL is an approach that combines many framework features, best

practices, and a different mindset. I’d like to highlight five of them:

Fragment Collocation

Fragment collocation means declaring GraphQL fragments directly in your

components instead of separate files. Parent components spread their children’s

fragments into their fragment to be allowed to render their children.

Apollo supports a lesser form of collocated fragments and better collocated

fragments are currently in beta.

Two critical principles associated with good use of collocation of fragments are:

Your component must never receive GraphQL-sourced data in its props: it

should only have access to what it declares in its fragment(s).

Components must never share fragments. Relay enforces that a fragment is

prefixed with the component name.

An example Relay component

function IssueSummary(props: {
 issue: IssueSummaryFragment$key;
}) {
 const issue = useFragment(

#

#

#

issueSummary.tsx (Focus Fragment)

https://www.apollographql.com/blog/graphql/fragments/using-graphql-fragments-for-safer-cleaner-and-faster-code/
https://www.apollographql.com/docs/react/api/react/hooks-experimental/#usefragment

 graphql`
 fragment IssueSummaryFragment on Issue {
 title
 body
 }
 `,
 props.issue
);

 return (

 <h1>{issue.title}</h1>
 <div>{issue.body}</div>

);
}

The parent component would then spread that fragment in its fragment and

render the child component:

10 ...IssueSummaryFragment

issues.tsx

23 return <IssueSummary key={issue.__id} issue={issue} />;

A top-level component will make a query and (either directly or transitively) spread

all the fragments of all its descendent components:

12 ...IssuesFragment

The result is the same as if you had manually written this top-level query into a

MainViewQuery.graphql file, like so:

1 query MainViewQuery($owner: String!, $name: String!) {

mainView.tsx

MainViewQuery.graphql

2 repository(owner: $owner, name: $name) {
3 owner {
4 login
5 }
6 name
7 issues(first: 1) {
8 edges {
9 __id

10 node {
11 title
12 number
13 author {
14 login
15 }
16 }
17 }
18 }
19 }
20 }

But, instead of writing this query by hand, a Relay-style GraphQL library will

compile your collocated fragments into the same query, giving you many benefits:

Benefit #1� Preventing over-fetching

Relay-style GraphQL code has perfect data efficiency, never fetching data it

doesn’t need.

REST APIs can theoretically fetch exactly the data your UI needs, or they can have

flexible query parameters to filter your requested data , but in practice they have

to over-fetch to serve multiple use cases in your UI. Data provided by REST APIs is

usually an ever-increasing superset of what is actually needed by the UI, as

pruning of the data is a solvable but often neglected problem.

GraphQL improved on this by allowing the UI author to always request exactly

what data they are looking for, in theory always achieving perfect data-fetching

efficiency and never over-fetching. The problem arises when you share GraphQL

queries/fragments across multiple components: static analysis can’t tell you when a

field in a .graphql file is unused and therefore safe to remove .

#

2

3

Fragment collocation in Relay-style GraphQL solves this problem: if you remove a

field from the component’s fragment, or if you just remove the component, and no

other component references that field, it will be removed from your query without

any action on your part. Relay implements tooling to facilitate all this:

Data Masking� Your component can only see what it puts in its fragment. Your

component gets a key via its props but that key isn’t usable until fed through

something like useFragment, and the data returned by useFragment only contains

the data defined in the component’s fragment.

Lint rules that prevent you from doing anything that might result in bad data

fetching/passing practices, e.g. adding a field to your fragment only to pass it

into a child component, spreading fragments that you don’t use directly, etc.

TypeScript typing to prevent rendering a component without spreading its

fragment.

Etc.

Benefit #2� Preventing under-fetching

Relay-style GraphQL code doesn’t have bugs where components need data that

was never queried.

Without fragment collocation it’s possible to write a React component that doesn’t

always get the data it depends on. For example, let’s say you have a component
that takes a User object that has firstName and lastName fields. Your component

knows that these fields are nullable and has appropriate null checking, but it can’t

guarantee that all the queries that use your component include both fields. This

can lead to bugs at runtime where your component unexpectedly returns null. UI

rarely even logs this error case.

With fragment collocation you can be guaranteed that all the data your component

needs will always be queried, because you can’t render the component without

querying. The fields may still end up being null, but not because of bugs in your

GraphQL code.

Benefit #3� Your components are easier to reason about

#

#

If your collocated fragments abide by the first principle above:

“Your component must never receive GraphQL-sourced data in its props: it

should only have access to what it declares in its fragment(s)”

they will be much easier to reason about. This is my personal favorite benefit of

collocated fragments, and of Relay-style GraphQL in general.

For example, take this standard React component that gets GraphQL data from a

prop:

1 function IssueTitle(props: { issue: { title: string|null } }) {
2 return {props.issue.title};
3 }

This component seems very simple but if you need any information about where

this title comes from in order to render the component, you’ll have to search

elsewhere. Want to use another field in your render? You’ll have to add a prop and

then go find where the data is sourced so you can add the field there.

Compare it to a GraphQL component with a collocated fragment:

1 function IssueTitle(props: { issue: IssueTitleFragment$key }) {
2 const issue = useFragment(
3 graphql`
4 fragment IssueTitleFragment on Issue {
5 title
6 }
7 `,
8 props.issue
9);

10 return <p>{issue.title}</p>;
11 }

issueTitle-legacy.tsx

issueTitle.tsx

Here we can easily see that title is a field on the Issue type.

Want to see the schema documentation for it? Just mouse over the field:

Want to jump to the schema and see related fields? Cmd-click the field from here.

Want to use another field in your render? Just add it right in this component’s

fragment.

You get the idea.

Benefit #4� Improved TypeScript types

If your collocated fragments abide by the second principle above:

“Component’s must never share fragments.”

they will benefit from much improved TypeScript typing.

It’s possible to work in a codebase where TypeScript typing of GraphQL data is

bad. There are several ways that can happen. For example:

Types get widened in the definition of a component prop. For example, a

GraphQL type might be a union of string literals but the component’s prop

#

widens it to string.

The GraphQL data goes through a transform operation that doesn’t keep all

the GraphQL types, and what types it does keep get demoted from something

specific based on the query. For example, you query for one field but the type

you use is the abstract GraphQL type that includes all the fields, all nullable,

even though you didn’t query for them. In this case your editor’s autocomplete

will think it potentially has access to all the fields, which is asking for trouble.

Field types get lost through non-strict typing and vanilla JavaScript.

Even in a codebase with non-strict, non-rigorous TypeScript the typing of GraphQL

in a Relay-style component will always be perfect, because your component gets

its own auto-generated, custom type that is based on its fragment. The rest of the

codebase doesn’t matter. And since you’re not passing GraphQL data around in

props, the types never degrade.

If you don’t have a field in your fragment, your TypeScript type won’t have it,

regardless of whether or not other components query for it. Your TypeScript type
perfectly represents your component.

Having a custom TypeScript type for each fragment gives you other developer

experience gains as well, covered later.

Benefit #5� Easily re-fetch just your component’s data

By separating your GraphQL into fragments you’re also setting yourself up to easily

re-fetch just the data your component needs instead of the entire query. Relay, for

example, makes it trivial to upgrade a fragment to a re-fetchable fragment, auto-

generating a function that, when called, will send a query for just the data in your

fragment.

Without collocated fragments you have to choose between:

Re-fetching your entire query or

Manually writing a function that re-fetches just what you want and manually

mutating the local cache to reflect the re-fetched data.

#

https://relay.dev/docs/guided-tour/refetching/refreshing-fragments/#using-userefetchablefragment

Bonus: having globally unique IDs for items in the graph means that re-fetching

data for just one component will NOT cause data inconsistencies in your UI. If your

auto-generated re-fetch function has data for an item that is rendered by two

different components your UI will use the fresh data in both places (using Relay’s

normalized store).

Benefit #6� Your component can fetch different data, depending on
context

A �Real-World) Example of a Problem

I have a component in my application that renders data at two stages: once when

previewing it, and again after it’s saved. During the preview stage, not all the fields

are available on the backend (despite having the same type), such as the id field.

This probably should have been modeled in the schema differently, but let’s set

that aside. I handled this by adding an @skip condition to the fields that weren’t

available during preview, but the only place to put the @skip variable is in a query

variable with a default parameter. It ended up looking like this:

1 query PreviewItemQuery($isForPreview: Boolean = true) {
2 ...ItemFragment
3 }
4
5 query SavedItemQuery($isForPreview: Boolean = false) {
6 ...ItemFragment
7 }
8
9 fragment ItemFragment on Item {

10 id @skip(if: $isForPreview)
11 }

This isn’t great because query variables are global variables with no obvious

connection to how they are used. Also, it’s not a real query variable: I don’t expect

it to ever get passed into the query and I’m only using it for its default state.

4

#

#

garbage.graphql

It was also error prone because it was a runtime error to add this query variable
into queries that didn’t transitively contain the fragment that used it . Nothing yelled

at me during compile time. This impedance mismatch between what my GraphQL

framework allowed me to compile and what my GraphQL server considered a valid

query caused errors in production.

The Solution

How can we do better? For starters, use a GraphQL framework that does enough

static analysis to treat the above as a compiler error. But even better: use

fragment arguments! Fragment arguments are basically just function arguments

for your GraphQL fragments. Here’s what a fragment argument definition looks like

in Relay:

6 fragment PreviewItemFragment on Item @argumentDefinitions(
7 isForPreview: { type: "Boolean!" }
8) {
9 id @skip(if: $isForPreview)

10 title

Which then enforces, at compile time, that this argument is passed to every spread

of the fragment:

5

#

previewItem.tsx

preview.tsx

https://relay.dev/docs/api-reference/graphql-and-directives/#argumentdefinitions

1 ...PreviewItemFragment @arguments(isForPreview: true)

And by being right next to the collocated fragment when defined, used, and

invoked you never have to guess why the argument exists or how it is used.

Benefit #7� Better GraphQL APIs

Collocated fragments encourage you to build simple GraphQL APIs that are

tailored to your UI components. It pushes you to move data complexity up to the

backend, where it (often) belongs.

Benefits Summary

If you only absorb one thing, make it this: switching from hand-written GraphQL

queries (whether you break them up into fragments or not) to GraphQL fragments

collocated with your React components has many downstream benefits that

instantly spoil you and make it impossible to go back.

Data Fetching

Relay-style GraphQL makes it easy to have pretty-good data-fetching performance

while enabling high-effort, best-possible performance.

Easy, pretty-good performance

This is your baseline. For no effort, all your GraphQL fragments are compiled and

batched into queries. You should have 1 GraphQL network request per

page/route, so that on page load you make 1 GraphQL query after your React

components begin rendering.

This is already better than the average Apollo app and possibly good enough for:

Enterprise/internal applications.

Applications with a captive audience that won’t leave if performance isn’t the

best it can be.

#

#

#

#

Anything where shaving hundreds of milliseconds off page load time isn’t worth

the developer cost of doing better.

Applications with users on better computers & internet connections.

Applications that have mostly desktop users.

Etc.

Medium-effort, better performance

The next level of performance comes from decoupling data fetching from React

rendering. The React team advocates render-as-you-fetch instead of fetch-on-

render, which Relay-style GraphQL facilitates (with features like compiled,

persisted queries and query preloading). When a person hits enter in the URL bar,

your server should start fetching and streaming data in parallel to sending down

the original HTML document. When a person clicks a button to open a modal with

lazily-loaded contents, your server should start fetching the data for the modal (in

parallel to the JS code powering the modal) as soon as the button is clicked. In this

model you have 0 GraphQL network requests (from the client) per page/route,

and 1 network request for every user interaction that initiates the need for more

data.

This is good enough for just about every application, for example:

Applications with users on high-latency mobile connections.

Applications where more developer effort is worth the performance gains.

Etc.

High-effort, best-possible performance

After batching larger and larger chunks of GraphQL into single queries, you’ll

potentially run into issues where disproportionately slow field resolvers hold up the

entire data fetch. Relay solves this by giving you the ability to control individual

fields using the @defer and @stream directives.

Additionally, there are niche problems that aren’t caused by GraphQL but can be

fixed by it. For example, let’s say you have a forum where people can make

#

#

https://legacy.reactjs.org/blog/2019/11/06/building-great-user-experiences-with-concurrent-mode-and-suspense.html#render-as-you-fetch
https://relay.dev/docs/api-reference/use-preloaded-query

different kinds of posts and there is one React component to render each kind of

post. Over time you’ve accumulated 1,000 kinds of posts which has caused your

bundle size to balloon to something huge. You’ve observed that 98% of posts can

be rendered with five components but the long tail of components all get used

some small amount. What do you do? One solution: abandon client rendering and

make your components non-interactive. An alternative: Relay’s Data-Driven

Dependencies �3D� allows you to base what JS you send down to the client on

what GraphQL data you’re about to return from the server. So you could include

the five most-used components in your main bundle, always ready, and additionally

send down just the React components needed to render the posts in the GraphQL

response you’re about to send down.

While these aren’t common concerns, a Relay-style GraphQL framework should

give you this level of control when needed.

This is good enough for every single application, including:

Applications with billions of users where milliseconds saved is worth huge

amounts of developer time.

Applications with developers who can’t help but implement the fastest option

even though it isn’t a good use of their time.

Persisted Queries

GraphQL APIs give the UI developer the power to query for whatever they want

directly from the client, but that comes with two problems:

�� You’re potentially sending down huge query documents to your clients only to

have them turn around and send them back up to the server. This is a waste of

bandwidth.

�� Accepting arbitrarily complex queries from any client can be a serviceability

and efficiency nightmare, and potentially a security risk . One way developers

have dealt with this is by calculating query complexity and then rate-limiting

the API. That approach only makes sense in certain circumstances.

#

6

https://relay.dev/docs/glossary/#3d

One solution to both of these problems is to use persisted queries, which just

means persisting your compiled queries somewhere the backend has access to,

assigning them a unique ID, and then only sending those unique ID to your clients.

Then your JS application need only send back that unique ID and the accompany

query variables to the GraphQL server when executing a query. This gets rid of the

bandwidth waste and also locks down queries to the ones your UI developers have

written, not letting arbitrary actors send whatever queries they want from the JS

console.

React Suspense Support

Relay fully supports React Suspense. Most other GraphQL libraries support it in at

least an experimental mode, and the React team has declared Suspense stable for

“opinionated data fetching frameworks.” The benefits to component readability and

removing error-prone loading logic are good enough to start using it now.

Developer Experience

There are a lot of developer experience benefits to Relay-style GraphQL but I’d

like to highlight two:

@required fields

GraphQL allows you to define non-nullable fields at the schema level, but it is well

established that you should avoid doing so lest you cause resiliency and

backwards-compatibility headaches for yourself. There is an incredibly high bar for

using non-nullable fields in the schema.

That said, the bar inside your component is not nearly as high. It is reasonable
when writing a component to say “if I don’t have this field, I might as well not

render anything.” Relay has an @required directive that allows you to replace code

like this:

#

#

#

issueSummary.tsx

https://relay.dev/docs/guides/persisted-queries/#the-persistconfig-option
https://react.dev/reference/react/Suspense
https://graphql.org/learn/best-practices/#nullability
https://relay.dev/docs/next/guides/required-directive/

6 fragment IssueSummaryFragment on Issue {
7 title
8 body
9 closed

10 createdAt
11 }

16 if (
17 issue.title == null ||
18 issue.body == null ||
19 issue.closed == null ||
20 issue.createdAt == null
21) {
22 return null;
23 }

with code like this:

6 fragment IssueSummaryFragment on Issue {

issueSummary.tsx

7 title @required(action: LOG)
8 body @required(action: LOG)
9 closed @required(action: LOG)

10 createdAt @required(action: LOG)
11 }

16 if (issue == null) {
17 return null;
18 }

That might not be a huge number of characters saved but:

You’re no longer keeping two lists of fields in sync.

Your TypeScript types are immediately what you want: either the entire issue is

null, or you have all the fields you require as non-nullable.

The Relay version logs to your telemetry endpoint when a field is

unexpectedly null instead of the code on the left which just silently ignores it.

@required supports other behavior, such as throwing an exception if a field is

null, for when that makes sense. These exceptions are thrown at a single

choke point with structured data about the fragment/field that eroded, making

them easy to setup global monitoring for regressions. That makes these errors

highly actionable in a way that you might not get with ad-hoc error logging.

You can use @required to bubble a null field up through the component

hierarchy in a way that doesn’t work with just returning null.

Etc.

Language Server Protocol / VS Code Extension

By moving GraphQL into your components you’re also moving the benefits of your

language-server protocol closer to your components. See above for how you get

schema documentation right in your components.

And more!

There is a TON of stuff I haven’t covered, such as declarative mutation directives,

type-safe optimistic responses, the benefits of tighter integration between your

GraphQL server and UI, Relay Resolvers, Relay’s normalized store with a better

memory footprint and better garbage collection than a response cache, a baked-in

pagination implementation, faster & more efficient React renders when data

updates, etc. The list just keeps going.

What’s Not Great
Hopefully by this point I’ve made the case that Relay-style GraphQL is a

fundamentally better approach to consuming GraphQL APIs from a React

application. If you’re wondering if there are any things that aren’t amazing about

this style (or Relay itself), I’ve got some for you:

�� Apollo has 19x the downloads that Relay has on npm:

#

#

#

https://relay.dev/docs/guided-tour/updating-data/graphql-mutations/#declarative-mutation-directives
https://relay.dev/docs/guided-tour/updating-data/graphql-mutations/#optimistic-response
https://relay.dev/docs/guides/graphql-server-specification/
https://relay.dev/docs/guides/relay-resolvers/
https://relay.dev/docs/guided-tour/list-data/pagination/
https://npmtrends.com/@apollo/client-vs-react-relay

If your engineering org skews junior and relies heavily on how much more

there is written about Apollo than Relay, then maybe you should stick to

Apollo. Or maybe you’re just risk averse and you like using what everyone else

is using. Or maybe you take comfort in using what everyone else is using

instead of what one random fucking internet blog post says you should use. Or

maybe you just like big bars.

�� Relay-style GraphQL requires a compiler step. Relay, for example, has a

compiler that you have to leave running in watch mode as you develop.

�� Relay’s documentation is pretty good but it’s not perfect. There are areas that

are severely under-documented, especially as you get into advanced features

that only Meta is using.

�� Relay works best when it integrates with your GraphQL server. This is called

the GraphQL Server Specification and outlines things like having globally

unique IDs, supporting the @connection directive, and providing a Node

7

https://relay.dev/docs/guides/graphql-server-specification/

interface. This is a good thing, and makes your life better, but in some

organizations a UI engineer might have very little control over the GraphQL

server implementation, making this a blocker for unlocking the full potential of

Relay.

FAQ

Q� Why do I need Relay-style GraphQL if …
… I’m already using collocated fragments with Apollo, I never share fragments

between components, I’m using graphql-code-generator to generate types for

every fragment, and I type all of my input props using the generated fragment

type?

A� �1� You’re using Apollo in a way that I’ve never seen in the real world. It sounds

great and you should be proud of yourself for independently inventing some great

practices that are basically Relay-style GraphQL. �2� Apollo does not facilitate

enforcing any of this. There is no config option or lint rule you can turn on to make

it so that you have to stick to this pattern. With Relay, everything about this style is

statically enforced.

Q� Will Relay fall apart …
… in a complex, real-world application? These examples are really simple.

A� No.

Q� How do you unit test …
… Relay components?

A� I’ve only worked on codebases that leaned very heavily on end-to-end testing

for React components (and only unit tested non-UI-component JS code). But, if

you’re interested, here’s a bunch of stuff you can read on how to do it!

#

#

#

#

https://relay.dev/docs/guides/testing-relay-components/

Q� Do collocated fragments ever result in conflicts …

… between how you query for data in one component vs. another, for example

querying for the same root field but with different arguments? Do I have to start

manually aliasing fields in all of my components?

A� No, Relay handles this for you. If you pass different arguments to the same field

in two different fragments, they will each get the correct data (reflecting their

respective arguments) without having to manually alias anything.

Q� Will Relay take away control I have over …
… whether or how the query cache is used?

A� No, Relay’s fetchPolicy gives you pretty good control over network behavior.

That said, you obviously can’t control it at the granularity of a fragment (what

would that even mean), so if you need that you’ll have to separate your

component out into a lazily-loaded one (useLazyLoadQuery facilitates this).

Footnotes
�� The Guild is working on bringing bringing these ideas to other libraries. ↩

�� For example, here is Shopify’s order retrieval API. They went to pains to add a

fields parameter so you can specify a comma-delimited list of fields to fetch.

But, some of the fields, like client_details, have fields nested below it. You

can’t filter those. So even when a REST API goes out of its way to add some

level of filtering, it still isn’t going to make it possible to arbitrarily filter

perfectly, because then the API’s ergonomics increasingly suffer (and at some

point you’re just reinventing an ad-hoc GraphQL endpoint). Back when REST

APIs were all that there was, in my experience internal/private REST APIs

rarely even had a “fields” parameter and over-fetching was extremely

prevalent. ↩

#

#

8

#

https://relay.dev/docs/api-reference/use-lazy-load-query/
https://the-guild.dev/blog/unleash-the-power-of-fragments-with-graphql-codegen
https://shopify.dev/docs/api/admin-rest/2023-07/resources/order#get-orders?status=any

�� Static analysis has a hard time with this because GraphQL has abstract types
for many fields, and those references could theoretically be tracked across

your codebase, but the leaf fields are always primitive types (like string and

number) and tracking references to primitive values across an entire codebase,

across all code boundaries, is not a problem anyone has solved (to my

knowledge). That said, runtime analysis using JS Proxy can be used to detect

what fields go unused with some level of accuracy. Reddit Engineering wrote

about it here. Runtime analysis is better than nothing, but strictly worse than

just getting it exactly right at compile time. ↩

�� Relay’s cache is a normalized, in-memory object graph. ↩

�� My GraphQL server rejects queries with unused query variables. ↩

�� By locking down your API to exactly what your UI needs you’re engaging in

“defense in depth” security. This shouldn’t be your main mechanism for hiding

sensitive/private data that you don’t want clients to see, but not letting users

make arbitrary queries against your backend is a reasonable security

precaution. ↩

�� Don’t worry, Relay’s compiler is written in Rust. ↩

�� It might be neat if useRefetchableFragment took a refetchPolicy argument.

Maybe? ↩

ABOUT THE AUTHOR

Alan Norbauer lives in Los Angeles where he wrangles JavaScript for Netflix.

He's extremely relieved to no longer be living in Silicon Valley which almost killed his soul.

Alan is so old that you should call him "gramps." Alan enjoys bad music and bad novels. He still doesn't

know how to use Snapchat or TikTok.

If you'd like to know a little about Alan's personal life you can take a peek at his facebook profile, or if

you'd like to know way too much about his personal life you can watch this documentary on Youtube.

Opinions expressed are solely his own and do not express the views or opinions of his employer.

You can subscribe to this site's RSS feed or follow Alan on Threads or reach him by email .

https://www.reddit.com/r/RedditEng/comments/x0rasj/identifying_unused_fields_in_graphql/
https://relay.dev/docs/principles-and-architecture/runtime-architecture/#data-model
https://relay.dev/blog/2021/12/08/introducing-the-new-relay-compiler/
https://relay.dev/docs/api-reference/use-refetchable-fragment/
https://en.wikipedia.org/wiki/Weetzie_Bat
https://www.ted.com/talks/james_howard_kunstler_dissects_suburbia
https://www.youtube.com/watch?v=K0XJJBCX1O0
https://www.amazon.com/South-Border-West-Sun-Novel/dp/0679767398
https://facebook.com/alan.norbauer
https://youtu.be/vQYUwZFVbjg
https://alan.norbauer.com/rss.xml
https://www.threads.net/@alan.norbauer
mailto:altano@gmail.com?subject=Hey%20Nerd

© 2023 � built with Next.js • fonts by Andersson and Abbink alan.norbauer.com •

https://nextjs.org/
https://rsms.me/inter/
https://www.ibm.com/plex/
https://alan.norbauer.com/
https://www.threads.net/@alan.norbauer
https://www.github.com/altano
mailto:altano@gmail.com?subject=Hey%20Nerd
https://alan.norbauer.com/rss.xml

