
remysucre / blog Public

 main blog / posts / sql-eq.md Go to file

Update sql-eq.md 17 hours ago

230 lines (190 loc) · 8.52 KB

How to Check 2 SQL Tables are the Same
Today Stanley asked me a simple question: how can we check if the contents of two SQL tables are
the same? Well, you just do SELECT * FROM t1 = t2 ... wait, that's wrong, comparison doesn't work
on entire tables in SQL. My second attempt is a bit better: if we take the difference of the table both
ways, and end up with empty results, then they must be the same, right? In SQL: SELECT * FROM

t1 EXCEPT SELECT * FROM t2 (and the other way). Wrong again! Because EXCEPT takes the set
difference, it will be empty if, say, t1 contains 2 copies of a tuple, but t2 contains only one.

I gave up a little bit and started searching online, but surprisingly there was not a single satisfying
answer! The solutions online either suffer from the same issue as the EXCEPT query, or use some

obscure features that are not standard SQL (e.g. CHECKSUM which doesn't really work anyways).
How hard can it be to compare two tables in SQL?!

Intrigued, I posted the problem as a challenge to my colleagues: Write a query, using only
standard SQL features, to check if two tables are the same. Here "same" means the two table
contains the same set of distinct tuples, and every tuple has the same number of copies in each
table. Formally, they are the same bag/multiset.

If you've read the SQL standard (and every "non-standard") cover to cover, you'll come with the
following query after a few campari drinks: SELECT * FROM t1 EXCEPT ALL SELECT * FROM t2 . The
key is EXCEPT ALL which takes the "bag difference" similar to how UNION ALL takes the "bag

union". Alas, EXCEPT ALL is not implemented by SQLite! And probably for good reasons: whereas
EXCEPT can be compiled to just an anti-join, executing EXCEPT ALL probably requires keeping track

of which copy of the same tuple we've seen, or keeping a count per distinct tuple.

A more "vanilla SQL" solution looks like this:

Code Issues Pull requests Actions Projects Security Insights

remysucre

Preview Code Blame Raw

https://github.com/remysucre
https://github.com/remysucre/blog
https://github.com/remysucre/blog/tree/main
https://github.com/remysucre/blog/tree/main/posts
https://github.com/remysucre
https://github.com/remysucre/blog/commit/eef75f39bf81d392f976174217478b77c977081a
https://github.com/remysucre/blog/commits/main/posts/sql-eq.md
https://github.com/az15240
https://github.com/remysucre/blog
https://github.com/remysucre/blog/issues
https://github.com/remysucre/blog/pulls
https://github.com/remysucre/blog/actions
https://github.com/remysucre/blog/projects
https://github.com/remysucre/blog/security
https://github.com/remysucre/blog/pulse
https://github.com/remysucre/blog/commits?author=remysucre
https://github.com/remysucre/blog/raw/main/posts/sql-eq.md

Here, we group by all attributes of the table in order to explicitly mark every distinct tuple with its
count. And because all tuples are distinct after the grouping, we can use EXCEPT to compare the

results. That's pretty good! I should be happy about it and go back to work.

But I can't get over one small ugliness: I had to manually list all the attributes in the GROUP BY

clause, since GROUP BY * doesn't work. This means we have to change the query for every new

schema. "Fine," you say, "just generate the query and get back to work". Problem is, I don't feel like
working today, so I invite myself to another challenge: write a single query that does the job for
every pair of tables, where we are only allowed to change the table names.

TBH it's not surprising I got nerd sniped by this problem: half of my PhD dealt with equivalence, and
one idea in fact lead to the final solution. This key idea is to view a table in bag semantics as a
vector of numbers, and view joins of tables as polynomials. Specifically, consider sorting all the
distinct elements, and the i th entry of the vector stores the count of the i th distinct element. For
example, the table t=[a, b, b, c, c] beomes the vector [1 2 2] . Then, a self-join becomes
point-wise multiplication of the vector with itself. Using the same example, t NATURAL JOIN t

contains 1 copy of a , 4 copies of b , and 4 copies of c , [1 4 4] = [1 2 2] * [1 2 2] .

With this, we can connect repeated self-joins of a table with the moments of the vector (or power
sum, or p-norm, if you're more familiar with those). That is, the query:

computes , where is the vector representation of t and is its length, i.e. the number of

distinct elements in t . Abusing notation, we'll write that as

The above connection lets us use a very elegant result: for any two vectors of length , if

 then must be a permutation of . In other words, the moments uniquely
determines a bag of values! See Appendix A of Abo Khamis et.al. for a very elegant proof.

SELECT *, COUNT(*)

 FROM t1
 GROUP BY x, y, z, ... -- all attributes of t1

EXCEPT

SELECT *, COUNT(*)

 FROM t2

 GROUP BY x, y, z, ... -- all attributes of t2

SELECT COUNT(*)

 FROM t NATURAL JOIN t
 NATURAL JOIN t

 ... -- total of p copies of t's

 NATURAL JOIN t

https://dl.acm.org/doi/10.14778/3407790.3407799
https://egraphs-good.github.io/
https://github.com/uwplse/tensat
https://arxiv.org/abs/2108.02290
https://arxiv.org/abs/2202.10390
https://remy.wang/reports/dfta.pdf
https://dl.acm.org/doi/abs/10.1145/3591239
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Newton%27s_identities
https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
https://arxiv.org/abs/2306.14075

Our game plan is now this: for each table, compute all moments and compare the results. We can
do this with a recursive query:

After computing t2_moments in the same way, we can compare them with EXCEPT because they do

not contain duplicates.

But that's not enough, since having the same moments only guarantees the vectors are permutations
of each other. In terms of the original relation, the table [a, b, b] will be indistinguishable from the
table [a, a, b] , because [1 2] has the same moments as [2 1] . To rule out this case, we use

a simple fact from linear algebra: if is a permutation of and , then . In SQL, this
means we need to take the natural join of t1 with t2 and compare the count with the self join of

t1 (and of t2):

See the complete query at the end of this post. All together, the query uses only standard SQL
features, and to use it for a new pair of tables we only need to change the table names. Of course, it
is completely impractical for any table of decent size (it runs in time $O(N^N)$), but that's not the
point :)

CREATE TABLE t1_moments AS

WITH RECURSIVE r1 AS (

 -- first iteration, return t1 as-is

 SELECT 1 as i, t1.*

 FROM t1

 UNION ALL

 -- iterations i+1 joins together i+1 copies of t1

 SELECT r1.i + 1 AS i, t1.*

 FROM r1 NATURAL JOIN t1
 -- we could have stopped at COUNT(DISTINCT *) ...

 -- but that's not valid SQL :(

 WHERE i < (SELECT COUNT(*) FROM t1)

)

-- compute the moment with COUNT

SELECT COUNT(*) FROM r1 GROUP BY i;

SELECT (SELECT COUNT(*) FROM t1 NATURAL JOIN t1)
 - (SELECT COUNT(*) FROM t1 NATURAL JOIN t2)

 AS d WHERE d <> 0;

SELECT (SELECT COUNT(*) FROM t2 NATURAL JOIN t2)
 - (SELECT COUNT(*) FROM t1 NATURAL JOIN t2)

 AS d WHERE d <> 0;

But even the simpler query using GROUP BY was not trivial to come up with, which brings the
question: why isn't it a standard feature of SQL to just compare two tables? I imagine it can be very
useful for testing, e.g. you write a simple but slow version, and check a more complex but fast version
returns the same result.

CREATE TABLE t1 (x INTEGER);

CREATE TABLE t2 (x INTEGER);

INSERT INTO t1 VALUES (1), (1), (2), (3);
INSERT INTO t2 VALUES (2), (1), (3), (2);

-- If t1=t2 (meaning they are the same bag/multiset), then the following should r

-- Sanity check: do they contain the same *set* of elements (ignoring duplicates)

SELECT * FROM t1 EXCEPT SELECT * FROM t2;

SELECT * FROM t2 EXCEPT SELECT * FROM t1;

-- Now compare the moments/power sums

CREATE TABLE t1_moments AS

WITH RECURSIVE r1 AS (

 -- First iteration, return t1 as-is

 SELECT 1 AS i, t1.*
 FROM t1

 UNION ALL

 -- Iterations i+1 joins together i+1 copies of t1

 SELECT r1.i + 1 AS i, t1.*

 FROM r1 NATURAL JOIN t1
 -- We could have stopped at |t1| (number of distinct elements in t1)

 WHERE i < (SELECT COUNT(*) FROM t1)

)

-- Compute the power sum with COUNT

SELECT COUNT(*) FROM r1 GROUP BY i;

-- Repeat for the other table...

CREATE TABLE t2_moments AS

WITH RECURSIVE r2 AS (

 SELECT 1 AS i, t2.*

 FROM t2

 UNION ALL

 SELECT r2.i + 1 AS i, t2.*

 FROM r2 NATURAL JOIN t2

 WHERE i < (SELECT COUNT(*) FROM t2)
)

SELECT COUNT(*) FROM r2 GROUP BY i;

SELECT * FROM t1_moments EXCEPT SELECT * FROM t2_moments;

SELECT * FROM t2_moments EXCEPT SELECT * FROM t1_moments;

-- To rule out the case where they have the same moments, but are "permutations"

SELECT (SELECT COUNT(*) FROM t1 NATURAL JOIN t1) - (SELECT COUNT(*) FROM t1 NATUR

SELECT (SELECT COUNT(*) FROM t2 NATURAL JOIN t2) - (SELECT COUNT(*) FROM t1 NATUR

