
The Unreasonable Effectiveness of
Sequence Diagrams in MermaidJS
Sat Jul 22 2023

Recently I came across this article written by the founder of MermaidJS, Knut Sveidqvist�

Sequence diagrams, the only good thing UML brought to software development

Knut argues that the UML standard has been a flop, but sequence diagrams have been
somewhat of a success, because unlike most of UML, they're actually quite useful.

What has surprised me since � and what this article is about � is how surprisingly pleasant it
is to create sequence diagrams in code with MermaidJS.

I'm a big fan of visualizing things. Not everyone seems to be such a proponent of this. My
experience is that as soon as I'm able to offload some of the complexity of a problem to a
visual representation, it frees up space. I can use that space to increase my capacity for
grappling with complexity. If I cannot do this, I notice that I struggle to hold mutliple big
chunks in my head at once.

If you've dabbled in UML, or if you've seen a sequence diagram, you might acknowledge that
they're pretty useful.

The problem is that creating them with visual tools is a pain in the ass. I've created a handful
of sequence diagrams using Lucidchart and it's a slow process and extremely brittle to any
future change.

https://www.mermaidchart.com/blog/posts/sequence-diagrams-the-good-thing-uml-brought-to-software-development

Mermaid, on the other hand, represents a different approach. It is a Javascript diagramming
library, where you declaratively define your diagram in code.

This input�

Leads to this output�

I'll admit, that never sounded appealing to me. I reach for visualizations because the code is
overwhelming me. Reaching for code to solve my code problem seemed like something that
would only appeal to someone that loves code so much that they're probably no good at
visualizing.

But then I tried it and I loved it. It was quick, painless and beautiful. I'm honestly surprised how
quick it is and how well it works.

Here are some tips on how I use it.

Fleshing out user stories

```mermaid

sequenceDiagram

 

You->>MermaidJS: Define participants

You->>MermaidJS: Define the flow

You->>MermaidJS: Render it

 

MermaidJS->>OutputDocument: Output is rendered

 

OutputDocument-->>You: You can enjoy the beautiful graph

```


At my work at BitHawk I use it to flesh out user stories. Typically I'll need to understand how
some part of the sytem works before I come up with a solution. Both the current
implementation as well as the solution may benefit from being mapped out as a sequence
diagram.

I start with a markdown file, which may look something like this�

But then I could augment it with a sequence diagram to explain my implementation plan. Right
inside of markdown!

Description

Acceptance Criteria

Implementation Plan

Here I would include implementation plan.

Estimation

Description

This would be a high level description of the user story.

Acceptance Criteria

/

Implementation Plan

Here I would include implementation plan.


```mermaid

 

sequenceDiagram

autonumber

 

participant user as User

participant story as Story

participant convertIntoEpicUIAction as Convert into Epic (UI Action)

participant scrumStatesUtilSI as Scrum States Util (SI)

participant epicRecord as Epic Record

 

user->>story: Clicks on "Convert into Epic" button

story->>convertIntoEpicUIAction: Convert into Epic UI Action is triggered

 

convertIntoEpicUIAction->>scrumStatesUtilSI: Get Scrum States

 

convertIntoEpicUIAction->>epicRecord: Epic Record is created with story fields

https://bithawk.ch/


I will first render this with a markdown parser with hot reloading.

The one I settled on is a Rust library called Marky, which has some nice built�in templates and
comes with Mermaid support.

And the result looks like this�

With the default theme the diagram is somewhat small. As soon as I have some time I'll create
a theme that allows for a full�width diagram, until then I've been zooming in a bit with the
browser to make the diagram full screen.

This allows me to tweak the code and get an instant preview of the result.

Linking up your sequence diagram

At this point the diagram is being rendered as html elements. The main benefit I see is that this
allows you to link conceptual components to their actual implementation. This is especially

 

convertIntoEpicUIAction->>story: Mention update in story

convertIntoEpicUIAction->>story: Cancel story

 

convertIntoEpicUIAction->>user: Redirect user to new epic

user->>epicRecord: User arrives on epic

 

```


Estimation

/

marky output.md -D --live

https://github.com/npm/marky-markdown

useful in the ServiceNow context where Scripts live within records which have their own
URLs.

And this is how that looks�

```mermaid

sequenceDiagram

autonumber

 

participant user as User

participant story as Story

participant convertIntoEpicUIAction as Convert into Epic (UI Action)

participant scrumStatesUtilSI as Scrum States Util (SI)

participant epicRecord as Epic Record

 

# This is how you would include links

link convertIntoEpicUIAction: Convert into Epic @ https://dev168935.service-now.com/nav_

link scrumStatesUtilSI: Scrum States Util @ https://dev168935.service-now.com/nav_to.do?

 

user->>story: Clicks on "Convert into Epic" button

story->>convertIntoEpicUIAction: Convert into Epic UI Action is triggered

 

convertIntoEpicUIAction->>scrumStatesUtilSI: Get Scrum States

 

convertIntoEpicUIAction->>epicRecord: Epic Record is created with story fields

 

convertIntoEpicUIAction->>story: Mention update in story

convertIntoEpicUIAction->>story: Cancel story

 

convertIntoEpicUIAction->>user: Redirect user to new epic

user->>epicRecord: User arrives on epic

```


Rendering as an image

That might be good enough for most use cases. But typically I want to copy and paste my
markdown into an HTML input field on a rm_story record in ServiceNow. When I do that I
want the HTML formatting as well as an image of the diagram to transfer over.

So long as the diagram is being rendered as HTML, this won't work. We need to render the
diagram as a base�� image. That way, when we copy the text with the image, all of the
image data is loaded into the clipboard.

Here's how we can accomplish that.

First we convert the mermaid diagrams in our markdown file to an image. I like going with SVG
here, but the HTML field I'm targetting doesn't support that, so I'll have to settle for PNG. I use
the mermaid cli library for this.

Sometimes I'll scale up the PNG a bit if it looks too small.

And then I'll run marky again. This time without the D flag �because mmdc converted our
mermaid code into image references� and with the I flag to include the images as base��
encoded blobs.

If we now navigate to the hot reload server, we'll be able to select the entire page, copy it
and paste it into our HTML field, transferring content, styling and images.

mmdc -i input.md -o output.md -e png

mmdc -i input.md -o output.md -e png -s 2

marky output.md --live --I local

https://github.com/mermaid-js/mermaid-cli

RSS

Conclusion

I agree with Knut, sequence diagrams are useful and I've discovered that MermaidJS
combined with some Markdown tooling is a very convenient way to use them in practice.

2023 © Jesse M. Szepieniec.

https://jessems.com/feed.xml

