
 Search

Date: Thursday, July 06, 2023

About Archives Projects Subscribe Contact @mihai

« Older Post

Slack Canvas In The Streets, Quip In The Sheets
Labels: Quip

I finally got access to the recently-launched Slack canvas feature. This project was the last thing I worked on before I left

Quip/Slack/Salesforce in April of 2022, and I was curious how it had evolved since then.

Canvas started as a prototype in mid-2021 to reuse Quip technology to power a collaborative editing surface inside of Slack. The

initial phase involved Michael Hahn and I doing unspeakable things with iframes1 to get the two large codebases to work

together2 with minimal changes. This allowed a relatively rich feature set to be explored quickly, but it was not something that was

designed to be generally available. At the time of my departure the work on productionizing (the second 90% of the project) had

just begun.

The first thing that becomes apparent is that the roots of canvas in Quip are entirely hidden from the user — no Quip references

in the announcement or anywhere in the UI. This makes sense from a “don’t ship your org chart” perspective — no user should

care how a feature is implemented. However, if you peek under the hood, you can start to see the some Quip tidbits. The most

obvious place to start is to look for network requests with quip in them — a couple of which happen when loading a Slack

canvas:

The “controller” is the core logic of Slack canvas editor, and we if load one of those URLs, we see even more Quip references:

The DOM also resembles Quip’s, down to the same CSS class names being used. The need to scope/namespace them to avoid

colliding with Slack’s was one of the open questions when I left, but I guess Slack has a BEM-like structure which ensures that

Quip’s simpler class names don’t collide (as long as they don’t integrate another similar un-prefixed codebase). There are also no

iframes in sight, which is great.

https://blog.persistent.info/
https://persistent.info/projects
https://blog.persistent.info/feeds/posts/default
mailto:mihai@persistent.info
https://persistent.info/@mihai
https://blog.persistent.info/2023/07/10th-anniversary-of-google-reader.html
https://blog.persistent.info/2023/07/slack-canvas-quip.html
https://blog.persistent.info/search/label/Quip
https://slack.com/blog/news/meet-slack-canvas
https://slack.com/features/canvas
https://quip.com/
https://www.linkedin.com/in/mwhahn/
https://en.wikipedia.org/wiki/Ninety%E2%80%93ninety_rule
https://slack.com/blog/news/meet-slack-canvas
https://en.wikipedia.org/wiki/Conway%27s_law


Quip also had extensive in-product debugging tools, and I was curious if they also made the transition to Slack canvas. They’re

normally only enabled for employee accounts, but as hinted there is a way to enable them as a “civilian” user too. A couple of

commands in the dev tools, and I was greeted by the green UI that I had spent so many years in:

I was also hoping that copying/pasting content from Quip into Slack canvas was a backdoor way to get some of features that

have not (yet?) made the transition (spreadsheets, date mentions, etc.), but it does not appear to work.

On the mobile side, I had explored reusing Quip’s hybrid editing approach in the Slack iOS app, including the core Syncer library.

Hooking up Console.app to an iOS device shows that the Syncer (and thus Quip) are still involved whenever a canvas is loaded.

https://quip.com/blog/how-quip-builds-inproduct-debugging-tools
https://quip.com/blog/how-quip-builds-inproduct-debugging-tools#:~:text=However%2C%20if%20you%27d%20like%20to%C2%A0%E2%80%9Ccheat%E2%80%9D%20there%20may%20be%20a%20way%20%E2%80%94%20keep%20in%20mind%20that%20Marathon%20didn%27t%20have%20any%20cheat%20codes%20but%20one%20of%20its%20contemporaries%20did.
https://medium.com/@btaylor/react-with-c-building-the-quip-mac-and-windows-apps-c63155c1531b
http://console.app/


One of the open questions on mobile at the time of my departure was how to render Slack content that’s embedded in a

document. Quip’s mobile editor is a (heavily customized) web view, so that we can reuse the same rendering logic on all

platforms. It's possible to see that the canvas rendering is still web-based by inspecting the Slack app bundle (Emerge Tools

provides a nice online tree view) – there is a mobile_collab.js file which implements document rendering:

https://blog.persistent.info/search/label/WebKit
https://www.emergetools.com/
https://www.emergetools.com/app/example/ios/slack?search=collab


Slack on the other hand is an entirely native app. Porting Quip’s editor to native components didn’t seem feasible on any sort of

reasonable timeframe. It was also not appealing to reuse Slack’s web components on mobile, since they weren’t designed for that

(either from a UI or data loading perspective). I had speculated that we could leave a “placeholder” element in the web view for

Slack-provided UI (like a message card), and then overlay the native component on top of it. But I wasn’t sure if it would be

feasible, especially when the document is scrolled (and the native view overlay would have to be repositioned continuously).

It’s not as easy to inspect the view hierarchy of an iOS app (without jailbreaking), so I can’t verify this directly, but it would appear

that this placeholder/overlay approach was indeed chosen. Most of the time, the native Slack UI is positioned perfectly over the

document. However, in some edge cases (e.g when a scroll is triggered because the keyboard is being brought up), things end

up slightly out of sync, and the placeholder is visible:

https://doist.dev/posts/debugging-the-ui-of-third-party-ios-apps


This is my first time being on the outside of a project while significant work on it continued (unlike other times), and it’s been

fascinating to observe. I congratulate all the people involved in shipping Slack canvas, and will cheer them on3.

1. I later realized I had done the same thing 15 years earlier, getting Reader iframed into Gmail as another proof-of-concept.

2. At one point we had slack.com iframing quip.com which in turn was iframing slack.com again (so that we could show Slack

UI components inside documents), an architecture we took to calling “turducken.”

3. Especially if they bring back syntax highlighting for code blocks.

Post a Comment

Enter Comment

« Older Post

Blog Archive
2023 (10)
2022 (7)
2021 (5)
2020 (2)
2019 (1)
2018 (4)
2017 (2)
2016 (4)
2015 (3)
2014 (13)
2013 (10)
2012 (13)
2011 (12)
2010 (11)
2009 (7)
2008 (6)
2007 (17)
2006 (22)
2005 (33)
2004 (91)
2003 (55)
2002 (1)
1999 (61)
1998 (91)

Labels
Bookmarklets (7)
Chrome (8)
clip2 (39)
Greasemonkey (19)
Grendel (6)
Hammers (71)
Iconographer (106)
Infinite Mac (5)
Meshroom (6)
Meta (84)
Proto-Projects (5)
pTunes (25)
Quip (26)
Reader (21)
Retro (10)
Tailscale (8)
Thor (36)
WebKit (16)
WebMedia (7)
Widgets (6)

About Me

I am Mihai Parparita and can be reached at mihai@persistent.info.

Things I've done/had a hand in that you might have heard of: Tailscale, Quip, Chrome Apps, Google Reader,
Iconographer, Overplot and Gmail Greasemonkey Scripts. A more complete projects list is being back-filled. I also
have a resume with a few more details.

I exist on Blogger, LinkedIn, Twitter, Mastodon, GitHub, Facebook and Foursquare (update frequency/abandonment
rate varies).

All code on this is licensed under a Apache 2.0 License unless otherwise specified. All content is licensed under a
Creative Commons Attribution 3.0 License.

https://blog.persistent.info/2023/07/10th-anniversary-of-google-reader.html
https://twitter.com/mihai/status/1007099329226539008
https://blog.persistent.info/2006/10/google-reader-redux.html
http://slack.com/
https://quip.com/
http://slack.com/
https://blog.persistent.info/2023/07/10th-anniversary-of-google-reader.html
https://blog.persistent.info/2023/
https://blog.persistent.info/2022/
https://blog.persistent.info/2021/
https://blog.persistent.info/2020/
https://blog.persistent.info/2019/
https://blog.persistent.info/2018/
https://blog.persistent.info/2017/
https://blog.persistent.info/2016/
https://blog.persistent.info/2015/
https://blog.persistent.info/2014/
https://blog.persistent.info/2013/
https://blog.persistent.info/2012/
https://blog.persistent.info/2011/
https://blog.persistent.info/2010/
https://blog.persistent.info/2009/
https://blog.persistent.info/2008/
https://blog.persistent.info/2007/
https://blog.persistent.info/2006/
https://blog.persistent.info/2005/
https://blog.persistent.info/2004/
https://blog.persistent.info/2003/
https://blog.persistent.info/2002/
https://blog.persistent.info/1999/
https://blog.persistent.info/1998/
https://blog.persistent.info/search/label/Bookmarklets
https://blog.persistent.info/search/label/Chrome
https://blog.persistent.info/search/label/clip2
https://blog.persistent.info/search/label/Greasemonkey
https://blog.persistent.info/search/label/Grendel
https://blog.persistent.info/search/label/Hammers
https://blog.persistent.info/search/label/Iconographer
https://blog.persistent.info/search/label/Infinite%20Mac
https://blog.persistent.info/search/label/Meshroom
https://blog.persistent.info/search/label/Meta
https://blog.persistent.info/search/label/Proto-Projects
https://blog.persistent.info/search/label/pTunes
https://blog.persistent.info/search/label/Quip
https://blog.persistent.info/search/label/Reader
https://blog.persistent.info/search/label/Retro
https://blog.persistent.info/search/label/Tailscale
https://blog.persistent.info/search/label/Thor
https://blog.persistent.info/search/label/WebKit
https://blog.persistent.info/search/label/WebMedia
https://blog.persistent.info/search/label/Widgets
mailto:mihai@persistent.info
https://tailscale.com/
https://quip.com/
https://developer.chrome.com/apps
https://www.google.com/reader
http://www.mscape.com/products/iconographer.html
https://persistent.info/overplot/
https://github.com/mihaip/gmail-greasemonkey
https://blog.persistent.info/p/projects.html
https://persistent.info/about/resume.pdf
https://www.blogger.com/profile/12343650264888591427
https://www.linkedin.com/in/mihai-parparita/
https://twitter.com/mihai
https://hachyderm.io/@mihaip
https://github.com/mihaip
https://www.facebook.com/mihai.parparita
https://foursquare.com/mihai
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by/3.0/

