
Reactivity without
the Framework

A tiny ~2kb library for building reactive interfaces in native
JavaScript

But why? Get Started

 Star 1,411

ArrowJS is an experimental tool for
programming reactive interfaces using
native JavaScript. It’s not really a
framework, but not less powerful than a

https://www.arrow-js.com/
https://www.github.com/justin-schroeder/arrow-js
https://twitter.com/intent/follow?region=follow_link&screen_name=jpschroeder
https://www.arrow-js.com/docs/
https://github.com/justin-schroeder/arrow-js
https://github.com/justin-schroeder/arrow-js/stargazers

Overview

If JavaScript is so good, then what does a tool like Arrow bring to the table? So
glad you asked. Arrow has 2 primary features:

Observable data.
Declarative/Reactive DOM rendering.

For many applications, these two features are all you need to build delightful
and complex user interfaces. Need state management? Use a module’s scope.
Need components? Use functions. Need routing? The web platform already
does this pretty well 😉.

Additionally, Arrow boasts a few more important talking points:

Zero dependencies.
No build tools required (or even suggested).
Less than 3KB min+gzip. (22x smaller than this itty bitty gif →)

framework either.

At its core — ArrowJS is an admission
that while we developers were busy
falling in love with fancy UI frameworks,
JavaScript itself got good — like really
good.

Got time for a quick example? Great.

import { reactive, html } from '@arrow-js/core'

const data = reactive({

 clicks: 0

});

html`

 <button @click="${() => data.clicks++}">

 Fired ${() => data.clicks} arrows

 </button>

`

Fired 0 arrows

Key Commitments

Commitment to JavaScript

Arrow relies heavily on modern features of JavaScript such as template literals,
modules (think import and export), and Proxies. For example, you'll
immediately notice that Arrow does not have a special template "language" like
so many other frameworks. Instead it relies on template literals (tick marks `)
— specifically tagged template literals — to interpolate expressions and render
DOM elements. For example:

const third = 'Third';

html`

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

 First

 Second

 ${third}

`

First
Second
Third

We go in depth on templates in the docs, but a key concept to understand here
is that template literals, and tagged template literals, are native features of
JavaScript.

Why does this matter? Well for one it makes Arrow fast — most of the parsing
is done using language-level features. More importantly, however, learning
Arrow is mostly learning how to use modern native JavaScript to create UI
systems, so the concepts here are portable.

Already fancy yourself a great JavaScript developer? Great! Then learning
Arrow won't take you any time at all.

Commitment to no build tools

Build tools can be useful. Arrow itself is written in TypeScript so it necessitates
a build script to compile, but while there is no restriction against using a build
tool, Arrow will never require one. Arrow removes the need for complex
operations that are best left to compilers, like converting templates to render
functions. It does this by making some assumptions:

It's ok to ship modern JS (no IE support)
You’re writing HTML (not native voodoo)

It will always be good and right to pull in Arrow from a CDN and start building
your project right away.

Commitment to performance

Arrow is fast. Downloading, booting, and patching are all fast. In fact, you can
generally expect on-par-or-better performance than its bigger JS framework
counterparts. Arrow will always be a guilt-free choice for those under a
performance budget.

Commitment to Open Source

Arrow was created by me, Justin Schroeder. It is Open Source. It will always
be Open Source. My hope is this project helps reframe developer’s
expectations of "native" JavaScript.

Get Started with ArrowJS

© 2023 - Justin Schroeder

https://twitter.com/jpschroeder
https://www.arrow-js.com/docs/

