
A SLACK CLONE IN 5 LINES OF BASH

The title oversells the content a bit:

first, Slack (or Mattermost, or even the Internet Relay Chat (IRC)) offer
slightly more features than the Simple Unix Chat system (suc), the topic of
this piece;
then, suc’s actual line count exceeds five.

Nevertheless, suc’s core indeed consists of five lines of bash; and suc provides
Slack, Mattermost, etc.’s core features:

Real-time, rich-text chat,
File sharing,
Fine-grained access control,
Straightforward automation and integration with other tools,
Data encryption in transit
and optionally at rest,
state-of-the-art user authentication.

This paper shows how suc implements those features. suc stays small by
leveraging the consistent and composable primitives offered by modern UNIX
implementations 1.

Line count matters

One of my most productive days was throwing away 1000 lines of
code. – Ken Thompson, apparently

Measuring programming progress by lines of code is like measuring
aircraft building progress by weight. – Bill Gates, (probably
apocryphal)

Some of the managers decided that it would be a good idea to track
the progress of each individual engineer in terms of the amount of
code that they wrote from week to week. […] When he got to the lines
of code part, [Bill Atkinson] […] wrote in the number: -2000. –
https://www.folklore.org/StoryView.py?
story=Negative_2000_Lines_Of_Code.txt

Their fundamental design flaws are completely hidden by their
superficial design flaws. – Douglas Adams

https://skeptics.stackexchange.com/questions/43800/did-the-creator-of-unix-say-one-of-my-most-productive-days-was-throwing-away-10
https://www.folklore.org/StoryView.py?story=Negative_2000_Lines_Of_Code.txt

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies. – Tony Hoare

Despite the wide consensus among competent programmers that code is a
liability, almost every widely-distributed piece of software is a complexity
behemoth.

Case in point, let’s examine Mattermost’s line count:

cd /tmp

git clone --depth=1 https://github.com/mattermost/mattermost-server

cd mattermost-server

guix shell cloc -- cloc --quiet --timeout 0 .

github.com/AlDanial/cloc v 1.96 T=14.34 s (606.7 files/s, 139790.0 lines/s)

Language files blank comment code

Go 1805 96705 26782 501249

JSON 177 5 0 492604

TypeScript 4125 74236 24557 480491

JavaScript 811 21494 20745 68653

SCSS 557 9164 359 51464

HTML 54 6108 1167 37814

JSX 92 3473 1054 29707

SQL 807 3553 2253 18266

Text 11 3824 0 10638

YAML 45 126 96 7972

SVG 68 6 12 2586

Markdown 73 906 88 2168

make 8 234 68 974

GraphQL 4 65 2 596

XML 29 10 1 572

Bourne Shell 18 128 17 492

CSS 5 70 0 385

Dockerfile 4 14 8 46

CSV 2 0 0 25

diff 2 1 13 9

INI 1 2 0 7

SUM: 8698 220124 77222 1706718

Half a million lines of Go, and again half a million lines of TypeScript. Just for
the server !

Let’s compare with suc:

cd /tmp

git clone --depth=1 https://gitlab.com/edouardklein/suc

cd suc

guix shell cloc -- cloc --quiet --timeout 0 .

github.com/AlDanial/cloc v 1.96 T=0.01 s (475.8 files/s, 8207.6 lines/s)

--

Language files blank comment code

--

Bourne Again Shell 1 2 2 19

C 1 3 3 17

make 1 3 0 14

Bourne Shell 1 0 1 5

https://wiki.c2.com/?SoftwareAsLiability

--

SUM: 4 8 6 55

--

suc can implement Mattermost’s core features with 0.005% of the code. This is
madness !

suc’s core loop

Behold the five lines of bash that do as much as half a million lines of Go:

while /usr/bin/true

do

 read -r line || exit 0 # EOF

 /usr/bin/echo "$(/usr/bin/date --iso-8601=seconds)"\

 "$(printf "%-9s" "$(/usr/bin/id --user --name --real)")" \

 "$line" >> /var/lib/suc/"$1"

done

This infinite loop:

reads a line from standard input,
prefixes it with:

the date,
the real user name,

and appends it to a file in /var/lib/suc/

Surely, you think, this cannot do. What about authentication, access control,
encryption, rich text, etc. ?

suc does all that by leveraging SSH, UNIX’s access control API, and UNIX’s
text-based modularity.

Authentication

The suc process can only be launched by an authenticated user 2. Therefore, suc
contains no authentication code at all. All the authentication stuff happens before
suc even starts.

As with almost all UNIX servers nowadays, remote authentication is handled by
ssh. Before granting them the ability to start suc, ssh requires users to prove
their identity.

This proof can take the form

of a shared secret (i.e. a password),
of a cryptographic challenge (as is the case on the dam),
of the use of a One-Time-Passord (OTP) generating device,

https://the-dam.org/

or of any combination of the above (also known as Multi-Factor
Authentication, MFA).

ssh also authenticates the server to the client, thus preventing Man-in-the-Middle
(MitM) attacks.

Last but not least, ssh encrypts all data between the clients and the server.

A successful installation of suc therefore depends on a correct configuration of
the UNIX host and its ssh server. To use suc, a user needs to exist on the
system; and the ssh server needs to be configured to let her remotely log in.

Most UNIX distribution provide the useradd, passwd, etc. commands for user
management (creation, deletion, assignation to one or more groups, etc.). The
ssh server reads its configuration from a text file in /etc/ (typically
/etc/ssh/sshd_config), and from public key files (typically in
/home/<user>/.ssh/authorized_keys).

The dam server uses GNU Guix. GNU Guix differs from almost all other UNIX
distributions, because it uses declarative configuration. This means that root just
has to say what she wishes the configuration to be. The system then complies and
reconfigures itself to match root’s declaration.

For example, granting ssh access to alice on a GNU Guix system 3 requires
only the following line in the system’s configuration file:

 (ssh-user "alice" #:groups '("c3n" "frenchies")

 #:keys '((plain-file "alice.pub" "SOMESSHKEY")))

User alice exists on the system only as long as the line exists in the
configuration file. When the line disappears, the reconfiguration process removes
user alice, and she can no longer log in.

Some big advantages of declarative configuration systems include:

removing the need for clean up actions when removing functionality: once it
is no longer part of the declaration, it will be removed from the system
automatically.
the ability to clone a specific configuration by just replicating the
declaration; useful for back-ups, failovers, etc..

Among the disadvantages, one counts an increased difficulty for quick and dirty
setups (usually for a quick test to try out a piece of software). New tools (such as
e.g. guix shell) allows one to sidestep this difficulty.

In such a declarative system, suc’s overhead per user is limited to a single line in
the global configuration file. One cannot need less, and current chat systems need

https://the-dam.org/

more.

Access control

As with authentication, suc contains no access control code whatsoever. This
combination of caring about neither authentication nor access control is called
security agnosticism. Security anosticism allows suc to be lean, and therefore
more probably correct (and so, paradoxically, more secure) than its heavier
counterparts.

On UNIX, software can afford to be security agnostic because the system
provides a clean and powerful API for access control: the kernel knows about

users and groups,
processes and files.

Let’s dive in.

UNIX veterans will have noticed that suc prefixes the user’s messages with her
real name. Indeed, files have an owner (a user), whereas processes have two
owners (two users). The real one and the effective one.

Most of the time, real and effective owners are the same. suc’s ownership differs:
it effectively belongs to a special user also named suc; it really belongs to
whoever (e.g. user alice) launched the suc command 4.

The kernel examines the effective ownership of a process to determine said
process’ ability to read or write to files.

With that in mind, let’s examine the content of /var/lib/suc on the dam:

ssh -i ~/.ssh/id_rsa edk@the-dam.org ls -l /var/lib/suc

total 92

-rw-r----- 1 suc c3n 44368 Apr 13 19:18 banane

-rw-r----- 1 suc forbiddenlands 6234 Apr 13 21:04 forbiddenlands

-rw-r----- 1 suc frenchies 62 Apr 21 22:23 frenchies

-rw-r----- 1 suc guixdevs 0 Apr 22 15:39 guix

-rw-r----- 1 suc iwp9 4181 Apr 21 21:46 iwp9

-rw-r----- 1 suc users 18241 Jun 30 07:14 the-dam

-rw-r----- 1 suc wb3c 188 May 10 11:56 wb3c

The files in /var/lib/suc belong to suc; only suc can read and write those
files 5.

Any other user, such as alice, may read some of the files (e.g. banane),
provided she belongs to the appropriate group (e.g. c3n).

https://the-dam.org/

With this configuration, suc does not need to care about access control at all. For
example suc need not match a user against the list of authorized readers or
writers of a channel.

Instead, usuc6 will just happily always try to read or write the file. The kernel
will do the matching and prevent any unauthorized access.

On the dam, everyone can start suc, whose effective owner will be the user suc,
who has the right to write into any channel. By design, any user on the dam can
request membership into a group by blindly writing a request to the group’s
channel.

Less loosely-managed communities may wish to restrict channel write access to
members only. root achieves this by maintaining multiple copies of the suc
binary.

Let’s assume that

alice and bob belong to the blue group,
while eve and mallory belong to the red group.

root creates nobody-like7 users red and blue. She then creates two copies of
suc, one for each group:

ls -l /usr/bin/suc*

total 32

-rwsr-xr-- 1 red red 15624 Jun 4 10:51 suc_red

-rwsr-xr-- 1 blue blue 15624 Jun 4 10:56 suc_blue

And she also creates one channel for each team:

ls -l /var/lib/suc/

total 16

-rw-r----- 1 blue blue 11027 Jun 4 11:30 blue

-rw-r----- 1 red red 17 Jun 4 10:53 red

One can see that:

alice and bob belong to group blue.
They can read the blue channel. Indeed the file
/var/lib/suc/blue belongs to group blue and has mode -rw-
r----- : the second r means that members of the owning group
(here, blue), can read the file (but not write to it).
They cannot directly write to the file. Only user blue can.
They can however launch the /usr/bin/suc_blue program,
because group blue owns it, and it has mode -rwsr-xr-- . The x
means that members of the owning group (here, blue) can start the
program.

https://the-dam.org/
https://the-dam.org/

This program will run with user blue as the effective owner: User
blue owns the file and root has set its setuid bit (the s in the mode
line says so).
Therefore, alice and bob, being members of the blue group, can
launch the /usr/bin/suc_blue program, which being effectively
owned by user blue (despite being launched by alice or bob who
will be the real, but not effective owner) can write to the
/var/lib/suc/blue file.

eve and mallory belong to group red (but not group blue).
They cannot read the blue channel. Indeed, people other than user
blue or members of group blue have no rights on the
/var/lib/suc/blue file (the end of its mode line is ---).
They cannot write to the blue channel directly, only user blue can.
They cannot start the /usr/bin/suc_blue program, because they
do not belong to group blue. The only thing they can do to this file is
read it (its mode line ends in r--).
Therefore they can neither read nor write the blue channel.

To relieve root from the cumbersome and error-prone process of setting this all
up, suc provides an 80-something-lines long helper script called
suc_channel.sh.

GNU Guix users can create a suc channel by adding a single line to the system’s
configuration file:

(suc-private-channel "red" "red")

This line takes care of creating the necessary

suc_red setuid binary,
red user
red group
red channel file.

Here, GNU Guix’s declarative configuration paradigm shines again. The
suc_channel.sh script may fail halfway, leaving the system in an
undetermined state, whereas GNU Guix provides transactional updates: either the
transition happens fully or it does not at all. The system always stays in a known
clean state. One can even roll-back to a previous working state (see Multi-
dimensional transactions and rollbacks, oh my!).

GNU Guix also automatically computes which groups, users, and setuid binaries
should exist on the system. When root removes a private channel (e.g. red),
she must assess whether the associated group (also named red), user (also red),
and setuid binary (suc_red) should stay or go. That entails looking at the other

https://gitlab.com/edouardklein/suc/-/blob/master/suc_channel.sh
https://guix.gnu.org/en/blog/2018/multi-dimensional-transactions-and-rollbacks-oh-my/

channels to see if any of them is still owned by user red or group red. Again, a
cumbersome and error prone task whereas on GNU Guix, root just removes the
channel’s line from the system declaration. The red group, red user, and
suc_red binary will stay if and only if another part of the system needs them.

As an illustration, here is a full system declaration for the above example. One
can hardly be simpler than that.

(begin (use-modules

 (gnu packages base)

 (guix gexp)

 (beaver system)

 (beaver packages plan9)

 (beaver functional-services))

 (-> (minimal-ovh)

 (ssh-user "alice" #:groups '("suc" "blue") #:keys '())

 (ssh-user "bob" #:groups '("suc" "blue") #:keys '())

 (ssh-user "eve" #:groups '("suc" "red") #:keys '())

 (ssh-user "mallory" #:groups '("suc" "red") #:keys '())

 (suc-private-channel "red" "red")

 (suc-private-channel "blue" "blue")

 (suc-public-channel "purple")))

Fancy text

We have seen how suc is security-agnostic, relying on:

ssh for authentication,
UNIX’s file and process ownership and permission model for access control.

Let’s now dive into the featureful side of things by first looking at some bells and
whistles: rich text.

Most chat applications nowadays piggyback on an HTML engine to render the
chat’s text. For example mattermost’s client uses Electron. There go another few
tens of thousand of lines of code.

On the one hand, this adds tremendous complexity and increases the attack
surface of the application. On the other hand it lets the chat display elements in a
complex layout, or embed interactive widgets within the messages (such as emoji
reactions), etc.

suc uses one file per channel. This text file is meant to be displayed to the user
with a command-line tool such as tail or cat.

Before everything got shoehorned into an HTML rendering engine, people
managed to display rich text, boxes, and even primitive graphics on their
terminals. These capabilities more-or-less coalesced into something called ANSI
escape codes8. Almost all terminal emulators support those. Together with proper
UTF-8 support, they allow for the colorful, emoji-filled experience of your
average corporate slack channel, with ~5% of the memory footprint.

https://github.com/mattermost/desktop
https://www.electronjs.org/

If you paid attention to the 5 lines of bash that suc consists of, you have noticed
that while suc writes into the channel file, it does not read from it.

This job befalls to usuc. Why two separate binaries ? Because suc is a
privileged binary, which runs under the powerful effective ownership of whoever
can write to a channel. One must be careful to keep the logic and external
dependencies of suc to a bare minimum to minimize the attack surface, and
avoid any complex logic where bugs like to hide.

usuc, conversely, runs with both effective and real owners set to the calling user.
It can go crazy with the features, as whatever happens can not impact the channel
file, except through suc, whose logic is so simple there should not be any bugs in
it.

Here is as of <2023-06-29 Thu> the code for usuc:

#!/usr/bin/bash

set -euo pipefail

Autowrap self in rlwrap

if [-z "${RLWRAP:-}"]

then

 RLWRAP=1 rlwrap "$0" "$@"

 exit 0

fi

chan_owner=$(ls -l /var/lib/suc/"$1" | cut -d' ' -f 3)

if ["$chan_owner" != suc]

then

 SUC=suc_"$chan_owner"

else

 SUC=suc

fi

Tail the channel

tail -f -n 20 /var/lib/suc/"$1"&

while true

do

 read -r line || exit 0

 if ["${line::1}" == ":"]

 then

 echo '*runs* `' "${line:1}" '`' | pygmentize -l md -f 256 | "$SUC" "$1"

 bash -c "${line:1}" | "$SUC" "$1"

 else

 echo "$line" | pygmentize -l md -f 256 | "$SUC" "$1"

 fi

done

usuc:

makes sure to prefix its own call with rlwrap, which provides history and
line editing capabilities,
selects the correct setuid suc binary to run depending on who owns the
channel file,
calls tail -f, displaying the last 20 lines of the channel and then
anything that get subsequently written to it,
check whether the line typed by the user starts with “:” (see the next
section),

pipe anything the user typed through pygmentize.

Pygmentize is a nifty Python module for syntax coloring. Here it runs expecting
markdown on its standard input, and outputting ANSI color coded text on its
standard output. That way, a user can use markup syntax like **bold**, and get
bold output. suc gets markdown support in a single line of code.

Chat commands

Other tools can, like pygmentize, output ANSI-styled text. One of those is e.g.
gum.

To invoke gum directly from the chat interface, one just has to start a message
with :. usuc will catch that and will not pipe the text to suc like it would for a
normal message. It will instead run the command, and pipe its output to suc.

One can therefore type:

: gum style --border=rounded --bold --foreground=#F00 "Hello World !"

as a suc message and see something that looks like the following appear in the
channel:

╭─────────────╮

│Hello World !│

╰─────────────╯

Any command that exists in the namespace of the user who called usuc can run
that way. Its output will appear in the chat.

We use that on the dam to roll dice when we play table-top role playing games:

: roll 2d6

2023-04-13T21:04:57+00:00 gm *runs* ` roll 2d6 `

2023-04-13T21:04:58+00:00 gm [6, 2]

Again, it all happens in the namespace of the user. Any user can customize her
environment to keep useful chat macros on hand, without any impact on the other
users.

Piping text to suc

Instead of using usuc’s command-calling facility, one can pipe right into suc
the output of any command, from one’s shell.

https://github.com/charmbracelet/gum
https://the-dam.org/

For example if you want to pretty-print a piece of source code to a relevant
channel, you can invoke bat:

bat --force-colorization --paging=never --style=full toto.c | suc greybeards

and you will get a syntactically-colored listing of your code in the channel.

Complex chat system like Mattermost, Slack, etc. offer many integrations, that is,
ways to interact with other software.

suc is text-based ; integrating it with other tools feels natural in a UNIX
environment. For example consider the following bash one-liner:

make test > testlog || (suc devops < testlog ; exit 1)

This code will run the tests of a software project, and send the logs to the
devops channel on failure.

With the necessary boilerplate, this oneliner fits into the git hook update of a git
repo:

#!/usr/bin/bash

set -euxo pipefail

newrev="$3"

GIT_DIR=$(realpath "$GIT_DIR")

cd "$(mktemp -d)"

git clone "$GIT_DIR" .

git checkout "$newrev"

make test > test_log || (suc devops < test_log ; exit 1)

exit 0

And voilà ! You get a git/suc integration in 11 lines of bash. Any push to the
repo will trigger the test, reject the update on failure, and ring the DevOps team so
they can solve the problem.

Reading from a suc channel

suc users continually update a text file (the channel). By calling tail -f on
that text file, you can process the new lines as they arrive.

For example, to get notified when a new message gets posted in a channel, just
run:

tail -n0 -f /var/lib/suc/some-chan | (while true;

 do read -r line;

 notify-send "$line";

 done)

Too many notifications ? Reduce the noise by grepping for keywords:

https://github.com/sharkdp/bat
https://mattermost.com/integrations-overview/
https://www.atlassian.com/git/tutorials/git-hooks

tail -n0 -f /var/lib/suc/some-chan | \

 stdbuf -i0 -o0 grep -E "(myname|build failure|fire)" | \

 (while true; do read -r line; notify-send "$line"; done)

Don’t want to open as many windows as channels you follow ? Coalesce them all
in a single feed:

tail -f /var/lib/suc/*

Or use the more powerful lnav (a log file viewer), which will

remember where you left off,
set bookmarks,
assign a color to each channel,
parse the date, username, or any custom field that may appear in the text,
let you filter the messages,
run SQL queries on the messages.

Try to do that with Slack…

Bots

If you can write and read to a suc channel, you can do both at once. Chat systems
often host bots and semi-automated “assistants”. These provide a text-based
interface to e.g. tickets, continuous integration, corporate directory, server logs,
etc. Have a look below at the code of a bot that convert into meters any length
given in feet:

#!/usr/bin/bash

feet_to_meters (){

 feetexpr="$1"

 echo -e "$feetexpr \n m" | units | grep -Eo "* [0-9.]*" | tr -d '*'

}

tail -n0 -f /var/lib/suc/"$1" | \

 stdbuf -i0 -o0 grep -v "metric_bot" | \

 stdbuf -i0 -o0 grep -Eo "[0-9]+[[:blank:]]*(feet|ft)" | \

 (while true;

 do read -r line;

 echo "[metric_bot] $line is $(feet_to_meters "$line") meters." | suc "$1"

 done)

2023-06-30T11:20:47+02:00 edouard The plane flew at 33000 ft.

2023-06-30T11:20:47+02:00 bots [metric_bot] 33000 ft is 10058.4 meters.

Conclusion

suc piggybacks on SSH for authentication and on UNIX for access control and
composability. It provides almost all the features offered by Mattermost, Slack,
etc. with such a ridiculously small fraction of the code that one wonders why such
complex systems even exist.

https://lnav.org/

Using text files as the base for suc channels lets user leverage UNIX tools for
reading (tail, bat, lnav, less, grep, etc.), writing (gum, bat,
pygmentize, etc.), or semi-automated extension with bots, hooks, and scripts.

Tools can be written in any language, as long as they read and write text.

Advertisement

If you want to play with suc but don’t want to bother with installing it, or if you
don’t have any friends to share a suc instance with, come and join us at the dam !
For a measly 10€/year, you can enjoy sharing suc on a GNU Guix server with
people from all over the world.

If you would like your own instance of suc, don’t hesitate and rent a VPS from
Guix hosting ! For 100€/year, you get a GNU Guix VPS. Adding suc is just one
line of configuration away. There are no usage-based restrictions, your data stays
yours, and you can use your VPS to provide other services as well.

Footnotes:

1

in the dam case, GNU Guix, but suc itself contains no Guix- or even Linux-
specific code

2

Usually done by calling usuc <some-channel> on the command line

3

configured with Beaver Labs’ channel (see https://gitlab.com/edouardklein/guix)

4

UNIX exposes this capability through something called the setuid bit.

5

If you do not understand the -rw-r----- output of the command above, I
recommend section 2.4, “Permissions” of Brian W Kernighan and Rob Pike, The
UNIX Programming Environment, (Prentice-Hall Englewood Cliffs, NJ, 1984).

6

https://the-dam.org/
https://guix-hosting.com/
https://the-dam.org/
https://gitlab.com/edouardklein/guix

usuc extends suc with bells and whistles, see below.
7

nobody is usually a passwordless, shellless user who owns no files, to whom
ownership of a process is transferred when one wants to prevent said process from
being allowed to do any damage on the system.

8

This is a very deep rabbit hole. If you want to dive in, I’ve found good starting
points to be: Nick Black’s “Hacking the Planet (with Notcurses). A Guide to TUIs
and Character Graphics”, the relevant section of the VT100 manual, or this list of
animations.

https://nick-black.com/htp-notcurses.pdf
https://vt100.net/docs/vt100-ug/chapter3.html#S3.3.3
http://artscene.textfiles.com/vt100/

