
Justin Jaffray blog notes

Joins 13 Ways

03 Jul 2023

Relational (inner) joins are really common in the world of databases, and

one weird thing about them is that it seems like everyone has a different

idea of what they are. In this post I’ve aggregated a bunch of different

definitions, ways of thinking about them, and ways of implementing

them that will hopefully be interesting. They’re not without redundancy,

some of them are arguably the same, but I think they’re all interesting

perspectives nonetheless.

Table of Contents

A join is a lookup

A join is a nested loop over rows

A join is a nested loop over columns

A join is compatible alternate realities

A join is flatMap

A join is the solution to the N+1 problem

A join is paths through a graph

A join is a minimal model

A join is typechecking

A join is an operation in the Set monad

A join is the biggest acceptable relation

A join is a…join

A join is a ring product

A join is a lookup

The first and most practical way to see a join is that it’s “looking

something up,” or adorning some data with some additional, redundant

data.

I think the first place people typically encounter joins is when some guy

on the internet has told them to normalize their tables. Meaning they’ve

been told to stop storing data like this:

user country country_code

Smudge Canada CA

Sissel Canada CA

Petee United States US

https://justinjaffray.com/
https://justinjaffray.com/posts
https://justinjaffray.com/notes

This is “bad,” because there’s redundancy: country_code doesn’t change

between rows with the same country. If we were storing something

more volatile than this, we’d have to make sure that any changes to the

data were reflected everywhere, which is error prone and inefficient.

The correct way to do this is to normalize the table. Create a table which

only relates country and country_code:

country_id country country_code

1 Canada CA

2
United

States
US

and then reference that in the “fact table:”

user country_id

Smudge 1

Sissel 1

Petee 2

Then a join is the operation that lets us recover the original table, which

we might want to do some computations: to join these two tables we’d

write:

SELECT user, country, country_code FROM

 users

 INNER JOIN

 countries

 ON users.country_id = countries.country_id

Going forward, we will often adopt that convention that we implicitly join

“on” any columns of the two relations that have the same name. But we

will play a bit fast and loose with this, don’t sweat the details too much.

A join is a nested loop over rows

Given some predicate p, the join of two sets R and S is:

def join(R, S, p):

 output = []

for r in R:

 for s in S:

if p(r, s):

 output.push((r, s))

 return output

If the cross product of two collections is all concatenations of rows from

the two of them, their join is a subset of that.

A join is a nested loop over columns

The domain of a column is the set of possible values that can appear in it.

If I have a relation R whose columns are a and b, and S whose columns

are b and c, then the join of R and S is:

def join(R, S):

 output = []

 for a in domain(a):

 for b in domain(b):

 for c in domain(c):

 if R.contains(a, b) and S.contains(b, c):

 output.push([a, b, c])

 return output

A join is compatible alternate realities

Here’s our first weird one.

John and Sally are standing around the corner from each other, each has

a pet, and each can see a stray animal on the corner, but they can’t see

each other.

John and Sally both exist in a handful of alternate realities at once. For

instance, there’s one reality where John has a dog, and another where he

has a cat. We can summarize the realities that are possible for John in a

relation:

john’s pet stray

dog dog

cat dog

cat mouse

Similarly, Sally also has a pet, and can also see the stray:

sally’s pet stray

dog mouse

cat mouse

mouse dog

We only have this imperfect information, because John can’t see Sally’s

pet, and Sally can’t see John’s pet.

We can still make some inferences though: it can’t be the case that John

has a dog while Sally has a cat, because then they would disagree on

what the stray was (whenever John has a dog, the stray is a dog, but

whenever Sally has a cat, the stray is a mouse).

By this logic, we can list out all the combinations that might exist:

john’s pet stray sally’s pet

dog dog mouse

cat dog mouse

cat mouse dog

cat mouse cat

This is the join of the two tables on stray.

A join is flatMap

The flatMap function in many programming languages operates on

arrays. It computes a new array for every element of the original, and

concatenates the results.

> [1, 2, 3].flatMap(x => new Array(x).fill(x))

[1, 2, 2, 3, 3, 3]

This can implement a join. This:

SELECT * FROM r INNER JOIN s ON p

becomes this:

r.flatMap(x => s.filter(y => p(x, y)))

Some SQL variants support a LATERAL construction which turns joins into

flatMaps:

pg=# SELECT * FROM

 (VALUES (1), (2), (3)) r(x),

 LATERAL (SELECT * FROM generate_series(1, x)) u;

 x | generate_series

---+-----------------

 1 | 1

 2 | 1

 2 | 2

 3 | 1

 3 | 2

 3 | 3

(6 rows)

Whenever the right-hand side of such a flatMap doesn’t contain any

references to the left-hand side, it’s equivalent to a cross product (this is

the crux of how query decorrelation is done, utilizing successive rewrites

to remove column references from the right-hand side).

A join is the solution to the N+1 problem

A common problem that occurs when using ORMs is called the “N+1

problem.” This happens when you need to do a query for each row in a

result set. It ends up looking something like this:

pets = run_query("SELECT * FROM users")

for pet in pets:

 country_code = run_query(

 "SELECT country_code FROM countries WHERE country_id = %d" % pet.country_id

)

 print(pet.name, country_code)

This is a really common problem that shows up when people aren’t yet

used to using relational databases. The problem is that in databases that

use connections, like Postgres (this is not so much of a problem for in-

process databases like Sqlite), there’s a high fixed cost to an individual

query. Thus, you might want a way to tell the database “please do all

these lookups for me,” and the result turns out to be exactly a join:

SELECT name, country_code FROM

 users INNER JOIN countries ON users.country_id = countries.id

A join is paths through a graph

A relation is so named because it “relates” two sets. In the case of our

users table, it relates the set of usernames with the set of country IDs.

We can visualize this relationship as a graph:

And similarly, we relate the set of country IDs to the set of two-letter

country codes:

Since the right-hand side of the first graph, and the left-hand side of the

second graph share a vertex set, it makes sense to consider them

together:

If we enumerate all the paths that start in the left set of this graph, go to a

vertex in the middle set, and end on a vertex in the right set, we will

construct exactly the join of these two relations.

A join is a minimal model

In formal logic, a model of a set of sentences is a set of facts which make

all of the sentences true. In this setting, a relation is a predicate. The

users relation is the predicate that satisfies the following:

users("Smudge", 1).

users("Sissel", 1).

users("Petee", 2).

and the country relation is the predicate that satisfies:

country(1, "Canada", "CA").

country(2, "United States", "US").

Now consider the following implication:

read “whenever users(A, B) and countries(B, C, D), then Q(A, B, C,

D)." A model of this sentence is a set of facts which Q is true for such that

this sentence is true.

One possible model is:

Q("Smudge", 1, "Canada", "CA").

Q("Smudge", 2, "United States", "US").

Q("Sissel", 1, "Canada", "CA").

Q("Sissel", 2, "United States", "US").

Q("Petee", 1, "Canada", "CA").

Q("Petee", 2, "United States", "US").

Another is

users(a, b) ∧ countries(b, c, d) → Q(a, b, c, d)

Q("Smudge", 1, "Canada", "CA").

Q("Smudge", 2, "United States", "US").

Q("Sissel", 1, "Canada", "CA").

Q("Sissel", 2, "United States", "US").

Q("Petee", 2, "Canada", "CA").

Q("Petee", 1, "United States", "US").

Q("Banana", 1, "Banana", "Banana").

It’s not particularly satisfying that this definition means we can have

multiple possible models. We want something canonical. That’s why we

ask for the smallest model that works. It turns out that for sentences like

this, such a model always exists, and it’s the intersection of all models.

Here it’s

Q("Smudge", 1, "Canada", "CA").

Q("Sissel", 1, "Canada", "CA").

Q("Petee", 2, "United States", "US").

which is the join of users and country.

A join is typechecking

ML-style type systems bear a lot of similarities to joins (mostly because

they very strongly resemble Prolog and Datalog). First, let’s define our

relations as Rust traits:

trait Users {}

trait CountryCode {}

Now define our values, they’re Rust concrete types:

struct Smudge;

struct Sissel;

struct Petee;

struct Canada;

struct UnitedStates;

struct CA;

struct US;

impl Users for (Smudge, Canada) {}

impl Users for (Sissel, Canada) {}

impl Users for (Petee, UnitedStates) {}

impl CountryCode for (Canada, CA) {}

impl CountryCode for (UnitedStates, US) {}

Now we define the join itself. A triple (A, B, C) is in the join when (A,

B) is in Users, and (B, C) is in CountryCode.

trait UserCountryCode {}

impl<A, B, C> UserCountryCode for (A, B, C)

where

 (A, B): Users,

 (B, C): CountryCode,

{

}

Finally, we can check if something is in the join if our program

typechecks. This typechecks:

fn test<X: UserCountryCode>() {}

fn main() {

 test::<(Smudge, _, CA)>()

}

While this doesn’t:

fn test<X: UserCountryCode>() {}

fn main() {

 test::<(Smudge, _, US)>()

}

error[E0277]: the trait bound `(Canada, US): CountryCode` is not satisfied

 --> src/main.rs:32:12

 |

32 | test::<(Smudge, _, US)>()

 | ^^^^^^^^^^^^^^^ the trait `CountryCode` is not implemented for `(

 |

 = help: the following other types implement trait `CountryCode`:

 (Canada, CA)

 (UnitedStates, US)

note: required for `(Smudge, Canada, US)` to implement `UserCountryCode`

 --> src/main.rs:22:15

 |

22 | impl<A, B, C> UserCountryCode for (A, B, C)

 | ^^^^^^^^^^^^^^^ ^^^^^^^^^

...

25 | (B, C): CountryCode,

 | ----------- unsatisfied trait bound introduced here

note: required by a bound in `test`

 --> src/main.rs:29:12

 |

29 | fn test<X: UserCountryCode>() {}

 | ^^^^^^^^^^^^^^^ required by this bound in `test`

A join is an operation in the Set monad

Let’s define an option type (in JavaScript).

let Some = x => ({

 map: f => Some(f(x)),

 // Sometimes called `bind`.

 andThen: f => f(x),

 inspect: () => `Some(${JSON.stringify(x)})`,

});

let None = () => ({

 map: () => None(),

 andThen: () => None(),

 inspect: () => `None()`,

});

Now, say we have some records, but they’re all optional. As in, we might

not have them, so we have to wrap them in Some:

let user = Some({ name: 'Smudge', country: 'Canada' });

let country1 = Some({ country: 'Canada', code: 'CA' });

let country2 = Some({ country: 'United States', code: 'US' });

Now we’ll write a function that takes two of these records and returns

Some of their merging if they’re compatible, and None otherwise:

let merge = (user, country) => {

 if (user.country === country.country) {

 return Some({ name: user.name, country: user.country, code: country.code

 } else {

 return None();

 }

}

But since our actual records are optional, we need to wrap them in calls

to andThen:

let combine = (user, country) => {

 return user.andThen(user => {

 return country.andThen(country => {

 return merge(user, country);

 })

 });

}

Now we can see the results of calling this function with various values:

console.log(combine(user, country1).inspect());

console.log(combine(user, country2).inspect());

console.log(combine(None(), country1).inspect());

console.log(combine(user, None()).inspect());

One interesting thing about the way we’ve set this up is that we can

implement our “container” type differently, but keep the implementation.

Let’s implement a different container, called Rel, which stores a set of

records. Now our map operates on every row, and our andThen returns

another relation, which all get concatenated to the new relation.

let Rel = x => ({

 map: f => Rel(x.map(f)),

 andThen: f => Rel(x.flatMap(v => f(v).list())),

 list: () => x,

})

Now we can instantiate some data:

let users = Rel([

 { name: 'Smudge', country: 'Canada' },

 { name: 'Sissel', country: 'Canada' },

 { name: 'Petee', country: 'United States' },

]);

let countries = Rel([

 { country: 'Canada', code: 'CA' },

 { country: 'United States', code: 'US' },

]);

And try running the same function combine from before:

console.log(combine(users, countries).list());

And we get the join of the two relations:

[

 { name: 'Smudge', country: 'Canada', code: 'CA' },

 { name: 'Sissel', country: 'Canada', code: 'CA' },

 { name: 'Petee', country: 'United States', code: 'US' }

]

A join is the biggest acceptable relation

For two relations and , say a third relation which has all the

columns from both is “acceptable” if it doesn’t invent any new

information.

By that I mean, if you look at any row in and restrict it to just the

columns in , the resulting row exists in , and the same is true for .

For instance, say our tables are:

user country

Smudge Canada

Sissel Canada

R S T

T

R R S

R

user country

Petee United States

country country_code

Canada CA

United States US

This is unacceptable:

user country country_code

Smudge Canada US

Because if we restrict to the columns of , ,

we get

country country_code

Canada US

Which doesn’t exist in .

Notably, the empty relation is acceptable. The largest acceptable relation,

here, is

user country country_code

Smudge Canada CA

Sissel Canada CA

Petee United States US

This is the join of the two relations.

A join is a…join

A partial order is a set equipped with a binary relation satisfying the

following properties:

1. Reflexivity: for all ,

2. Antisymmetry: If and , then , and

3. Transitivity: If and , then .

(I provide this definition to be complete, but if it’s new to you, don’t expect

the above to give you the intuition you’d need to actually be able to think

about it.)

In a partial order, if two elements always have a least upper bound

(that is, a smallest which and are both), then that is called their

join and is written .

S

T

S ⟨country, country_code⟩

S

≤

a ≤ a a

a ≤ b b ≤ a a = b

a ≤ b b ≤ c a ≤ c

a, b
x a b ≤
a ∨ b

Define the following partial order on relations: if:

1. contains all the columns in , and

2. restricting any row in to just the columns in gives a row in .

Then for two relations and , exists, and it’s their join (in both

senses of the word).

A join is a ring product

You might know from high school how to manipulate polynomials. If , ,

and are all unknowns, the following expressions are all equivalent:

We can represent a relation algebraically in this way. A row is the product

of its columns. We represent the row

user country_id

Smudge 1

as the product of two (column name, column value) pairs:

A relation is the sum of its rows:

We also have the special value 1, satisfying for all .

We then add the following rules for simplifying these expressions:

Idempotence:

and Contradiction:

our lookup table here is

Then something interesting happens if we take the product of these two

expressions, obeying the normal rules of polynomial rewriting such as

R ≤ Q

Q R

Q R R

R S R ∨ S

a b

c

a(b + c) = ab + ac = ba + ca = ca + ba = (c + b)a

[user = Smudge][country_id = 1]

R = ​ ​

+

+

[user = Smudge][country_id = 1]

[user = Sissel][country_id = 1]

[user = Petee][country_id = 2]

1x = x x

[x = y][x = y] = [x = y]

[x = y][x = z] = 0 if y = z.̸

S = ​ ​

+

[country_id = 1][country = Canada][country_code = CA]

[country_id = 2][country = United States][country_code = US]

distributivity:

If you apply the laws of distributivity and commutativity here, you’ll wind

up with the following:

Which is precisely the join of the two relations (I’m told this is a tensor

contraction).

​

RS =

​ ​ ​ ​

⎝
⎜
⎛

+

+

[user = Smudge][country_id = 1]

[user = Sissel][country_id = 1]

[user = Petee][country_id = 2] ⎠
⎟
⎞

​ ​(+

[country_id = 1][country = Canada][country_code = CA]

[country_id = 2][country = United States][country_code = US])

​

+

+

[user = Smudge][country_id = 1][country = Canada][country_code = CA]

[user = Sissel][country_id = 1][country = Canada][country_code = CA]

[user = Petee][country_id = 2][country = United States][country_code = US]

