
Thomas Pain :: blog

RailMiles
I built an app to track how far I've travelled on trains
because of course I did
2023-06-22 :: 919 words

If you know me, you know that I'm kind of a nerd
about trains. It's not like I have an entire page
dedicated to what I think of certain types, or
anything.

In a similar vein to that, I decided that I wanted to
keep track of how far I'd travelled by train and that I
was going to build a few pages on my website to
do that for me.

Before I get into how all that was built and how
that works, this is what the end product looks like:

The UI is fairly simple - there's a table of all the
journeys logged in the last month (not pictured), a
map of those journeys and some overall stats at
the bottom of the page.

To add a journey, at the very least all you have to do
is tell it the date you travelled on and the stations
you started, changed and ended at:

https://www.tdpain.net/
https://www.tdpain.net/blog
https://www.tdpain.net/trains

How it's built
When a new journey is entered into the system,
there are two key things that need to happen to be
able to show the user a map and update the
mileage totals.

- First, the length of the journey needs to be
worked out by looking up schedules

- Second, the physical places the train runs
through need to be logged to generate the
map

Getting data
Currently, I use RealTimeTrains to source distance
data. Their API is first used to look up the schedule
for the trains that the journey was comprised of. A
journey can have multiple legs - for example, if I'm
travelling from Corby to Brighton, I would take two
trains, one from Corby to London St Pancras and
one from St Pancras to Brighton. For each leg in the
journey, we look up the schedule for a train that
took that route on the same day that the journey
took place on, then pull the stations it passed
through and the distance travelled from that train.

However, the RealTimeTrains API only allows
searching services by the stations they call at (as
opposed to just by the origin and terminus
stations) on the day they ran. This means that,
sometimes, we have to manually enter the service
IDs of the trains that formed the journey to get
accurate results, for example if we're logging them
for a journey we took yesterday. In this case, the
program skips straight to requesting the routing
and distance information for that train and don't
bother doing any schedule lookups.

https://realtimetrains.co.uk/

While scheduling information can (and is) pulled
from the RTT API, distance information for a service
is not. RealTimeTrains only servces this data in the
frontend, so if we want it, we have to do some
simple web scraping.

This is the actual code that pulls that information
out of the HTML, after which the numbers are
parsed and converted into miles.

 1 var waypoints [][3]string

 2 doc.Find(".location.call,.location.pas

 3 shortcode := shortcodeRegexp.FindS

 4 selection.Find(".location a")

 5)

 6

 7 if shortcode == "" {

 8 // If this is a junction witho

 9 return

10 }

11

12 waypoints = append(waypoints, [3]s

13 shortcode,

14 strings.TrimSpace(selection.Fi

15 strings.TrimSpace(selection.Fi

16 })

17 })

Note that here, a short/CRS code one of the three
letter codes used to refer to a train station - eg
BHM for Birmingham New Street, KGX for Kings
Cross, or VIC for London Victoria.

From all of this, we get a sequence of locations that
the train passes through and the distance between
them all. Now what?

Generating maps

It's all well and good talking about abstract
location data, but it'd be nice to put that on a map
and visualise it. Enter: OpenStreetMap!

Using OSM data, it becomes trivially easy to
translate a CRS code into a latitude and longitude
using the Overpass API, which puts a layer on top
of the raw OSM data to let you query it with a
dedicated query language. In fact, to get a list of
station locations (and while we're at it, names, since
we only store short station codes instead of their
full names in the database), all you need to run is
the following query:

1 [out:json];

2 node["ref:crs"];

3 out geom;

... which gives you a load of JSON that's comprised
of entries looking a little like this (you can play
around with the query here).

 1 {

 2 "type": "node",

 3 "id": 104734,

 4 "lat": 51.5656526,

 5 "lon": -1.7858762,

 6 "tags": {

 7 "name": "Swindon",

 8 "naptan:AtcoCode": "9100SDON",

 9 "network": "National Rail",

10 "operator": "First Great Western",

11 "platforms": "4",

12 "public_transport": "station",

13 "railway": "station",

14 "ref:crs": "SWI",

15 "toilets:wheelchair": "yes",

16 "wheelchair": "yes",

17 "wikidata": "Q3244572",

18 "wikipedia": "en:Swindon railway s

19 }

20 }

I filtered this raw data so it only contained the stuff
I was interested in, then embedded the file in the
Go code that powers RailMiles.

https://www.openstreetmap.org/about
https://wiki.openstreetmap.org/wiki/Overpass_API
https://overpass-turbo.eu/s/1wdQ

Now we have train routes and the locations those
routes correspond to, the last thing we have to do
is to render those to a map.

I chose to do all the visual mapping stuff with
Leaflet using the default OpenStreetMap tiles and
some fancy OpenRailwayMap tiles as an overlay to
emphasize the main railway routes atop that. On
the main page, the routes and stations visited in
the last month are compiled into a blob of
GeoJSON and fed to this chunk of code:

 1 <div id="journey-map"></div>

 2 <script>

 3 let map = L.map("journey-map");

 4

 5 L.tileLayer('https://tile.openstre

 6 maxZoom: 19,

 7 attribution: '...'

 8 }).addTo(map);

 9

10 let ormOverlay = L.tileLayer('http

11 attribution: '...',

12 minZoom: 2,

13 maxZoom: 19,

14 tileSize: 256,

15 className: "tile-orm", // this

16 });

17

18 let layerControl = L.control.layer

19

20 let gj = L.geoJSON("<< geoJSON goe

21 if (feature.properties && feat

22 layer.bindPopup(feature.pr

23 }

24 }});

25 gj.addTo(map);

26 map.fitBounds(gj.getBounds())

27 </script>

Problems
As much as I'd like to say that this is perfect and
works 100% of the time - it doesn't. Sometimes it
falls flat on its face and ceases to work. The main
issues I know about are:

https://leafletjs.com/

- I'm using web scraping - RealTimeTrains
doesn't have distance data in their API,
probably for a reason, so if they cotton on to
what I'm doing, I wouldn't be surprised if
they stop me from doing it

- Sometimes, distance data just isn't available
and isn't shown on the page, which stops the
whole thing from working.

- It's a bit slow

I have a couple of ideas of how to fix these. More
posts to follow!

© Thomas Pain 2019 - 2023. Written content
licensed under the CC BY 4.0. Credits. Sitemap.

http://creativecommons.org/licenses/by/4.0/
https://www.tdpain.net/credits
https://www.tdpain.net/sitemap
https://linuxmint.com/
https://www.tdpain.net/blog/the-modern-web-sucks

