
Extensions

The pg_tiktoken extension
Efficiently tokenize data in your PostgreSQL database using OpenAI's `tiktoken`
library

The pg_tiktoken extension enables fast and efficient tokenization of data in your PostgreSQL database
using OpenAI's tiktoken library.

This topic provides guidance on installing the extension, utilizing its features for tokenization and token
management, and integrating the extension with ChatGPT models.

Language models process text in units called tokens. A token can be as short as a single character or as long
as a complete word, such as "a" or "apple." In some languages, tokens may comprise less than a single
character or even extend beyond a single word.

For example, consider the sentence "Neon is serverless Postgres." It can be divided into seven tokens:
["Ne", "on", "is", "server", "less", "Post", "gres"].

The pg_tiktoken offers two functions:

You can install the pg_tiktoken extension by running the following CREATE EXTENSION statement in the
Neon SQL Editor or from a client such as psql that is connected to Neon.

What is a token?

pg_tiktoken functions

tiktoken_encode : Accepts text inputs and returns tokenized output, allowing you to seamlessly tokenize
your text data.

tiktoken_count : Counts the number of tokens in a given text. This feature helps you adhere to text
length limits, such as those set by OpenAI's language models.

Install the pg_tiktoken extension

Documentation menu

Announcing autoscaling in feature-preview!

https://github.com/openai/tiktoken
https://neon.tech/blog/postgres-autoscaling
https://neon.tech/

For information about using the Neon SQL Editor, see Query with Neon's SQL Editor. For information about
using the psql client with Neon, see Connect with psql.

The tiktoken_encode function tokenizes text input and returns a tokenized output. The function accepts
encoding names and OpenAI model names as the first argument and the text you want to tokenize as the
second argument, as shown:

The function tokenizes text using the Byte Pair Encoding (BPE) algorithm.

The tiktoken_count function counts the number of tokens in a text. The function accepts encoding names
and OpenAI model names as the first argument and text as the second argument, as shown:

The tiktoken_count and tiktoken_encode functions accept both encoding and OpenAI model names as
the first argument:

CREATECREATE EXTENSION pg_tiktoken EXTENSION pg_tiktoken

Use the tiktoken_encode function

SELECTSELECT tiktoken_encode tiktoken_encode(('text-davinci-003''text-davinci-003',, 'The universe is a vast and captivating mystery, wait'The universe is a vast and captivating mystery, wait

tiktoken_encode tiktoken_encode

--

 { {464464,,68816881,,318318,,257257,,59095909,,290290,,31443144,,3943839438,,1071510715,,1111,,49534953,,284284,,307307,,1878218782,,290290,,72477247,,1313}}

((11 rowrow))

Use the tiktoken_count function

neondbneondb==>> SELECTSELECT tiktoken_count tiktoken_count(('text-davinci-003''text-davinci-003',, 'The universe is a vast and captivating myste'The universe is a vast and captivating myste

 tiktoken_count tiktoken_count

 1717

((11 rowrow))

Supported models

https://neon.tech/docs/get-started-with-neon/query-with-neon-sql-editor
https://neon.tech/docs/connect/query-with-psql-editor
https://en.wikipedia.org/wiki/Byte_pair_encoding

The following models are supported:

Encoding name OpenAI model

cl100k_base ChatGPT models, text-embedding-ada-002

p50k_base Code models, text-davinci-002, text-davinci-003

p50k_edit Use for edit models like text-davinci-edit-001, code-davinci-edit-001

r50k_base (or gpt2) GPT-3 models like davinci

The pg_tiktoken extension allows you to store chat message history in a PostgreSQL database and
retrieve messages that comply with OpenAI's model limitations.

For example, consider the message table below:

The gpt-3.5-turbo chat model requires specific parameters:

tiktoken_count(<encoding or model>,<text>)tiktoken_count(<encoding or model>,<text>)

Integrate pg_tiktoken with ChatGPT models

CREATECREATE TABLETABLE message message ((

 role role VARCHARVARCHAR((5050)) NOTNOT NULLNULL,, -- equals to 'system', 'user' or 'assistant'-- equals to 'system', 'user' or 'assistant'

 content content TEXTTEXT NOTNOT NULLNULL,,

 created created TIMESTAMPTIMESTAMP NOTNOT NULLNULL DEFAULTDEFAULT NOWNOW(()),,

 n_tokens n_tokens INTEGERINTEGER -- number of content tokens-- number of content tokens

));;

{{

 "model""model":: "gpt-3.5-turbo""gpt-3.5-turbo",,

 "messages""messages":: [[

 {{"role""role":: "system""system",, "content""content":: "You are a helpful assistant.""You are a helpful assistant."}},,

 {{"role""role":: "user""user",, "content""content":: "Who won the world series in 2020?""Who won the world series in 2020?"}},,

 {{"role""role":: "assistant""assistant",, "content""content":: "The Los Angeles Dodgers won the World Series in 2020.""The Los Angeles Dodgers won the World Series in 2020."

https://platform.openai.com/docs/guides/chat/introduction

The messages parameter is an array of message objects, with each object containing two pieces of
information: The role of the message sender (either system , user , or assistant) and the actual
message content . Conversations can be brief, with just one message, or span multiple pages as long as the
combined message tokens do not exceed the 4096-token limit.

To insert role , content , and the number of tokens into the database, use the following query:

When a conversation contains more tokens than a model can process (e.g., over 4096 tokens for gpt-3.5-
turbo), you will need to truncate the text to fit within the model's limit.

Additionally, lengthy conversations may result in incomplete replies. For example, if a gpt-3.5-turbo
conversation spans 4090 tokens, the response will be limited to just six tokens.

The following query retrieves messages up to your desired token limits:

<MAX_HISTORY_TOKENS> represents the conversation history you want to keep for chat completion, following
this formula:

For example, assume the desired completion length is 100 tokens (NUM_COMPLETION_TOKENS=90).

]]

}}

INSERTINSERT INTOINTO message message ((rolerole,, content content,, n_tokens n_tokens))

VALUESVALUES (('user''user',, 'Hello, how are you?''Hello, how are you?',, tiktoken_count tiktoken_count(('text-davinci-003''text-davinci-003',,'Hello, how are you?''Hello, how are you?'))))

Manage text tokens

WITHWITH cte cte ASAS ((

 SELECTSELECT role role,, content content,, created created,, n_tokens n_tokens,,

 SUMSUM((tokenstokens)) OVEROVER ((ORDERORDER BYBY created created DESCDESC)) ASAS cumulative_sum cumulative_sum

 FROMFROM message message

))

SELECTSELECT role role,, content content,, created created,, n_tokens n_tokens,, cumulative_sum cumulative_sum

FROMFROM cte cte

WHEREWHERE cumulative_sum cumulative_sum <=<= <<MAX_HISTORY_TOKENSMAX_HISTORY_TOKENS>>;;

MAX_HISTORY_TOKENS = MODEL_MAX_TOKENS – NUM_SYSTEM_TOKENS – NUM_COMPLETION_TOKENSMAX_HISTORY_TOKENS = MODEL_MAX_TOKENS – NUM_SYSTEM_TOKENS – NUM_COMPLETION_TOKENS

In conclusion, the pg_tiktoken extension is a valuable tool for tokenizing text data and managing tokens
within PostgreSQL databases. By leveraging OpenAI's tiktoken library, it simplifies the process of
tokenization and working with token limits, enabling you to integrate more easily with with OpenAI's
language models.

As you explore the capabilities of the pg_tiktoken extension , we encourage you to provide feedback and
suggest features you'd like to see added in future updates. We look forward to seeing the innovative natural
language processing applications you create using pg_tiktoken .

Send a request to support@neon.tech, or join the Neon community forum.

MAX_HISTORY_TOKENS = 4096 – 6 – 90 = 4000MAX_HISTORY_TOKENS = 4096 – 6 – 90 = 4000

{{

 "model""model":: "gpt-3.5-turbo""gpt-3.5-turbo",, // MODEL_MAX_TOKENS = 4096// MODEL_MAX_TOKENS = 4096

 "messages""messages":: [[

 {{"role""role":: "system""system",, "content""content":: "You are a helpful assistant.""You are a helpful assistant."}},, // NUM_SYSTEM_TOKENS = 6// NUM_SYSTEM_TOKENS = 6

 {{"role""role":: "user""user",, "content""content":: "Who won the world series in 2020?""Who won the world series in 2020?"}},,

 {{"role""role":: "assistant""assistant",, "content""content":: "The Los Angeles Dodgers won the World Series in 2020."The Los Angeles Dodgers won the World Series in 2020.

 {{"role""role"::}}

 . .

 . .

 . .

 {{"role""role":: "user""user",, "content""content":: "Great! Have a great day.""Great! Have a great day."}} // MAX_HISTORY_TOKENS = 4000// MAX_HISTORY_TOKENS = 4000

]]

}}

Conclusion

Resources
Open AI tiktoken source code on GitHub

pg_tiktoken source code on GitHub

Need help?

mailto:support@neon.tech
https://community.neon.tech/
https://github.com/openai/tiktoken
https://github.com/kelvich/pg_tiktoken

Next

pgvector

Edit this page

Was this page helpful? Yes No

All systems operational

Made in SF and the World

Neon 2023 � All rights reserved

https://neon.tech/docs/extensions/pgvector
https://github.com/neondatabase/website/tree/main/content/docs/extensions/pg_tiktoken.md
https://neon.tech/
https://neonstatus.com/

