This and That

Ramblings from Adrian Klaver

Using iCalendar RRULE in Postgres

Posted on June 22, 2023

RRULE is an iCalendar specification for computing recurring calendar events. Something like, on first
Tuesday of each month pay this bill. This is done as a rule that generates the occurrences of the event as
needed. This solves the issue of a continually recurring event having to be physically stored as set of
occurrences. The link above has some examples and there is this site RRULE generator where you can
explore the options. This post will be a light introduction on how to store to, retrieve from a Postgres database
the rules using Python and Javascript. Then use that information to populate a Javascript calendar in a Flask
application. For Python the rrule module of the dateutil program will be used. In Javascript the rrule.js
program which is a port of dateutil.rrule

Setting up Python dateutil:
from dateutil.parser import parse
from dateutil.rrule import *
all for rrule is
["rrule", "rruleset", "rrulestr",
"YEARLY", "MONTHLY", "WEEKLY", "DAILY",
"HOURLY", "MINUTELY", "SECONDLY",

IIMOII, "TU", "WE", "TH", "FR", "SA", "SU"]
Examples.

Note the use of count. This is good habit to get into until you are
sure of what the rule is going to produce. Unless you want to produce an
infinite list of occurrences and bring your computer to its knees:). Don’t ask

me how | know.

Start at dstart and reoccur every month on same day of month for five occurences.

list(rrule(freq=MONTHLY, count=5, dtstart=parse("06/22/23")))

[datetime.datetime(2023, 6, 22, 0, 0),
datetime.datetime(2023, 7, 22, 0, 0),
datetime.datetime(2023, 8, 22, 0, 0),

https://aklaver.org/wordpress/2023/06/22/using-icalendar-rrule-in-postgres/
https://icalendar.org/iCalendar-RFC-5545/3-8-5-3-recurrence-rule.html
https://icalendar.org/rrule-tool.html
https://dateutil.readthedocs.io/en/stable/rrule.html
https://dateutil.readthedocs.io/en/stable/
https://github.com/jakubroztocil/rrule
https://aklaver.org/wordpress/

datetime.datetime(2023, 9, 22, 0, 0),
datetime.datetime(2023, 10, 22, 0, 0)]

Same as above but specify occurrences to be on 31st of month. This skips month with < 31 days as the
RRULE specification requires incorrect dates and/or times to be skipped not 'rounded’ down.

list(rrule(freq=MONTHLY, bymonthday=31, count=5, dtstart=parse("06/22/23")))

[datetime.datetime(2023, 7, 31, 0, 0),
datetime.datetime(2023, 8, 31, 0, 0),
datetime.datetime(2023, 10, 31, 0, 0),
datetime.datetime(2023, 12, 31, 0, 0),
datetime.datetime(2024, 1, 31, 0, 0)]

bymonthday supports negative indexing, so to get last day of month regardless of its day number use -1.

list(rrule(freq=MONTHLY, bymonthday=-1, count=5, dtstart=parse("06/22/23")))

[datetime.datetime(2023, 6, 30, 0, 0),
datetime.datetime (2023, 7, 31, 0, 0),
datetime.datetime(2023, 8, 31, 0, 0),
datetime.datetime(2023, 9, 30, 0, 0),

4
datetime.datetime(2023, 10, 31, 0, 0)]

To get a better idea of what is possible | recommend looking at the examples
here rrule examples

Incorporating RRULE into Postgres.
Create database table to hold rules and associated information.

CREATE TABLE public.rrule_example(
task_id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
task_title varchar NOT NULL,
task_desc varchar NOT NULL,
task_rrule varchar NOT NULL,
start_date date NOT NULL,
until_date date

)i
Underlying RRULE is a string format that is fully explained in the RFC. The quick and dirty way to derive that

in dateutil.rrule is to use the str() method on a rrule.

r = rrule(freq=WEEKLY, interval=2, dtstart=parse("06/22/2023"))

r._str__()
'DTSTART:20230622TOOOOOO\NRRULE : FREQ=WEEKLY; INTERVAL=2"

Insert string form of rrule into database.

INSERT INTO public.rrule_example OVERRIDING SYSTEM VALUE VALUES (1, 'Every two weel

select * from rrule_example;

[RECORD 1 J------mmmmmmm e e e
task_id 1
task_title Every two weeks

task_rrule DTSTART :20230622T000000 +

|

task_desc | Task occurrs every two weeks on Thursday
|
| RRULE:FREQ=WEEKLY; INTERVAL=2

https://dateutil.readthedocs.io/en/stable/rrule.html#rrule-examples
https://www.rfc-editor.org/rfc/rfc5545.txt

start_date | 06/22/2023
until date | NULL

Create function to find next rule occurrence using plpython3u procedural language.

CREATE OR REPLACE FUNCTION public.rrule_next_occurrence(t_rrule character
varying, start_dt timestamp with time zone)

RETURNS timestamp with time zone

LANGUAGE plpython3u

SECURITY DEFINER

AS $function$

from datetime import datetime

from dateutil.parser import parse

from dateutil.rrule import rrulestr

rule = rrulestr(t_rrule, ignoretz=True)
next_occ = rule.after(parse(start_dt, ignoretz=True), inc=True)

return next_occ

$function$

4

The function uses dateutil.rrulestr to parse the string version of the rrule. Then the after() method to find first
occurrence of rule after specified date.

select rrule_next_occurrence(task_rrule, '2023-06-21') from rrule_example where tas

rrule_next_occurrence

06/22/2023 00:00:00 PDT

Create function to find previous rule occurrence.

CREATE OR REPLACE FUNCTION public.rrule_prior_occurrence(t_rrule character
varying, start_dt timestamp with time zone)

RETURNS timestamp with time zone

LANGUAGE plpython3u

SECURITY DEFINER

AS $function$

from datetime import datetime

from dateutil.parser import parse

from dateutil.rrule import rrulestr

rule = rrulestr(t_rrule, ignoretz=True)
prior_occ = rule.before(parse(start_dt, ignoretz=True), inc=True)

return prior_occ

$function$

4

Use rrulestr to parse string rrule. Then before() to find last occurrence of
rule before specified date.

select rrule_prior_occurrence(task_rrule, '2023-06-23') from rrule_example where te

rrule_prior_occurrence

06/22/2023 00:00:00 PDT

Using this information in a Web page.

Using Flask set up FullCalendar(https://fullcalendar.io/) calendar to display recurring
events using rrule.js(https://github.com/jakubroztocil/rrule).

Need to include rrule-tz.js first then the FullCalendar rrule plugin.

<!--rrule.js with timezone support-->

<script type=""text/javascript" src="{{ url_for('static',
filename="'js/external/rrule/rrule-tz.js') }}"></script>
<script type=""text/javascript" src="{{ url_for('static',
filename='js/external/full_calendar/main.js') }}"></script>
<!--FullCalendar rrule plugin-->

<script type=""text/javascript" src="{{ url_for('static',
filename="'js/external/rrule/main.global.js') }}"></script>

In calendar constructor eventSources is where the calendar gets the information
to fill in the calendar.

<script>

document.addEventListener ('DOMContentLoaded', function() {
var calendarEl = document.getElementById('calendar');
var calendar = new FullCalendar.Calendar(calendarEl, {
timeZone: "US/Pacific",
slotMinTime: "07:00",
slotMaxTime: "19:00",
slotDuration: "00:15:00",
forceEventDuration: true,
defaultTimedEventDuration: "00:15",
initialView: "dayGridMonth",
headerToolbar: {
left: "prev,next today, prevYear,nextYear",
center: "title",
right: "dayGridMonth, timeGridwWeek, timeGridDay"

stickyHeaderDates: true,
eventSources: [

{
url: "/task_calendar_data",
3
{events:
[{
title: 'Weekly Mon/Fri',
rrule: {
freq: 'weekly',
interval: 1,
byweekday: ['mo', 'fr'],
dtstart: '2023-06-01T10:30:00',
until: '2023-10-31'
}
id? "fixed_event"
}
]
1)
calendar.render();
1)
</script>

In this case there are two sources url which fetches from a view in Flask and
events which is a fixed event that uses the rrule.js syntax to build an event.

The view is:

@calendar_bp.route("/task_calendar_data")
def taskCalendarData():
today_dt = date.today()
start_dt = request.args.get("start", today_dt.strftime("%m/%d/%Y"))
end_dt = request.args.get("end",
(today_dt
+ timedelta(days=1)).strftime("%m/%d/%Y"))

The connection(con) returned from get_db() uses cursor_factory=RealDictCursor
so results are returned as dictionaries.

con = db.get_db()
cur = con.cursor()
cur.execute("select * from rrule_example")
rs = cur.fetchall()
tasks = []
if rs:
for task in rs:
tasks.append({"id": task["task_id"], "title": task["task_title"],
"rrule": task["task_rrule"], "allDay": True})
response = current_app.response_class(
response=json.dumps(tasks),
mimetype='application/json'
)

return response

allDay is set True to pin the task to 00:00.

Insert a rrule that shows an occurrence on last day of month.

INSERT INTO

public.rrule_example OVERRIDING SYSTEM VALUE
VALUES
(2, 'Last day of month', 'Task occurrs last day of each month',
E'DTSTART:20230622TOO00O0O\NRRULE : FREQ=MONTHLY ; BYMONTHDAY=-1",
'2023-06-22", NULL);

The calendar display for the rrules inserted into the database and from the eventSources in the calendar
constructor. The current month and October 2023 when the rrule in the calendar constructor ends.

4 5
10:30a Weekly Mon/Fri

11 12
#® 10:30a Weekly Mon/Fri

18 19
® 10:30a Weekly Mon/Fri

25 26

® 10:30a Weekly Mon/Fri

* 10:30a Weekly Mon/Fri

13

20

27

June 2023
Wed Thu Fri
1 2
10:20a Weekly Mon/Fri
7 8 9
® 10:30a Weekly Mon/Fri
14 15 16
® 10:30a Weekly Mon/Fri
21 22 23
R———
28 29 30

10:30a Weekly Mow/Fri

* 1030 Weekly Mon/Fri

This entry was posted in Postgres by aklaver. Bookmark the permalink
[https:/laklaver.org/wordpress/2023/06/22/using-icalendar-rrule-in-postgres/] .

month

week

day

https://aklaver.org/wordpress/wp-content/uploads/2023/06/Screenshot-2023-06-22-at-14-36-05-Screenshot.png
https://aklaver.org/wordpress/wp-content/uploads/2023/06/Screenshot-2023-06-22-at-14-36-31-Screenshot.png
https://aklaver.org/wordpress/category/postgres/
https://aklaver.org/wordpress/author/admin/
https://aklaver.org/wordpress/2023/06/22/using-icalendar-rrule-in-postgres/

