
kurtextrem

Blog Open-Source About

Breaking Up with SVG-in-JS in 2023

In December last year, “Why We’re Breaking Up with CSS-in-JS” made rounds and describes why

you no longer want to have CSS inside of your JS bundles. However, CSS isn’t the only thing that

lands in JS bundles this day - SVGs do too, as Jason Miller, the author of Preact shows:

SVGs in JS have a cost and SVGs do not belong into your JS bundle. It’s about time to bring back

SVG-in-HTML.

Back to overview

Jun 30, 2023

Jason Miller 🦊⚛

@_developit · Follow

Please don't import SVGs as JSX. It's the most expensive form of sprite
sheet: costs a minimum of 3x more than other techniques, and hurts
both runtime (rendering) performance and memory usage.
This bundle from a popular site is almost 50% SVG icons (250kb), and
most are unused.

1.6K Reply Copy link

Read 75 replies

https://kurtextrem.de/
https://kurtextrem.de/search
https://kurtextrem.de/posts
https://kurtextrem.de/os
https://kurtextrem.de/about
https://dev.to/srmagura/why-were-breaking-up-wiht-css-in-js-4g9b
https://jasonformat.com/
https://preactjs.com/
https://kurtextrem.de/posts/
https://twitter.com/_developit
https://twitter.com/_developit
https://twitter.com/intent/follow?screen_name=_developit
https://twitter.com/_developit
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?tweet_id=1382838799420514317
https://twitter.com/intent/tweet?in_reply_to=1382838799420514317
https://twitter.com/_developit/status/1382838799420514317
https://twitter.com/_developit
https://twitter.com/_developit/status/1382838799420514317

Let’s take a look at better techniques for using SVG in JSX, while keeping our JS bundle small and

performant.

Table of contents

Open Table of contents

How does <svg> end up in JavaScript?

First of all, let’s make sure we know how the SVGs end up inside the JavaScript source-code.

Usually, this is done as part of writing JSX:

<!-- HeartIcon.svg -->

<svg viewBox="0 0 300 300">

 <g><path d="M0 200 v-200 h200 a100,100 90 0,1 0,200 a100,100 90 0,1 -200,0z" /></g>

</svg>

// App.jsx

import { HeartIcon } from "./HeartIcon.svg";

const App = () => <HeartIcon fill="red" />

To make the .svg file import work, bundlers need to be told what to do with files that are not

JavaScript (or TypeScript). A Webpack loader like svgr is commonly used – it transforms the .svg

file into a React component. It allows you to conveniently add attributes (like fill="red") to the

SVG tag:

// HeartIcon.svg after svgr (before JSX transformation) - ⚠ don't copy this.

export default props => (

 <svg viewBox="0 0 300 300" {...props}>

 <g><path d="M0 200 v-200 h200 a100,100 90 0,1 0,200 a100,100 90 0,1 -200,0z" /></g>

 </svg>

);

⚠ Never manually write React components that return SVG tags, it is an anti-pattern, with the

reasons written in the intro. Full SVG content belongs into .svg files only.

https://react-svgr.com/

Note the {...props} spread and that the SVG file content has been inlined.

After rendering, the HTML output might look like this:

<svg viewBox="0 0 300 300" fill="red"><!-- the difference is only the `fill` attribute -->

 <g><path d="M0 200 v-200 h200 a100,100 90 0,1 0,200 a100,100 90 0,1 -200,0z" /></g>

</svg>

Granted, this is very convenient and easy to use, but the ease of use comes with a drawback your

users have to pay…

Performance Deep Dive: Why SVG-in-JS is an anti-pattern

… so, why would you not want to have SVG code inside your JS bundle?

Parsing & Compilation

JavaScript parsing & compilation is not free – the more you have inside your bundle, the longer

JavaScript engines will take to go through the source code.

On a fast M2 laptop, the difference might not be obvious, but as Alex Russell from the Microsoft

Edge team reports year-by-year, there is a performance equality gap. As he puts it, a Samsung

Galaxy A50 and the Nokia G11 are the best devices you can buy to understand world-wide

users. Web development should be inclusive for everyone, and not only for wealthy regions.

SVGs are not JavaScript, they are HTML-like XML tags that describe images. You certainly don’t

want images inside your JS. By moving SVGs out of the JS bundle, you are moving them out of the

parsing & compilation step. In the following, you’ll see why this is beneficial.

p75

“Byte-for-byte, JavaScript is more expensive for the browser to process than the

equivalently sized image or Web Font”

— Tom Dale, web.dev

https://infrequently.org/
https://infrequently.org/2022/12/performance-baseline-2023/
https://web.dev/optimizing-content-efficiency-javascript-startup-optimization/#parsecompile

Parsing & Compilation is the step right before the execution. So whenever your JavaScript is

downloaded and ready to run, the time it takes to parse and the time it takes to compile, is the

time where the user is waiting for the interactivity.

For React, you also need hydration on top. Download + Parsing + Compilation + Hydration is the

Time-To-Intereactive there. The bigger the component tree, the more needs to be hydrated. The

article “JavaScript Start-up Optimization” from Addy Osmani has really gone in-depth on this topic.

On a side-note, compression can also positively impact the processing time, but do not forget that JS engines work with the

uncompressed source code. For that, you could move the parsing & compilation to an earlier time by using <link

rel="modulepreload"> , or by intercepting with a ServiceWorker. In that case, parsing & compilation will be done right after

downloading, instead of right before execution. Managing the timing can lead to better results, but does not fix the root

cause.

Memory Usage

Anything that is parsed needs to be kept around, which is for the duration of the page in the

JavaScript memory heap, and most likely inside of any of the various memory caches browsers

have. A Galaxy A50 has 4 GiB of RAM, and your website is not the only application running on that

device, so there is not much space left. Be gentle to your users.

Best practices for removing SVGs from the JS bundle

Before we start, the first step is finding out if you have SVG in your JavaScript bundle. This can be

done by either inspecting the source code and searching for “svg”, or by using Lighthouse’s in-

built bundle viewer. You can access it with the button in the “Performance” section

of a report.

If you have a non-trivial amount inside your bundle, there are some options that help you get rid

of them. The following diagram might help you make a decision in most cases:

Visualization of JavaScript download & execution in Chromium. Parsing & Compilation does not block the main thread. V8.dev

https://web.dev/optimizing-content-efficiency-javascript-startup-optimization/#parsecompile
https://developer.chrome.com/blog/modulepreload/#so-is-link-relmodulepreload-just-link-relpreload-for-modules
https://v8.dev/blog/code-caching-for-devs
https://v8.dev/blog/cost-of-javascript-2019

Is above-the-fold?

Inline in HTML

Is ≤ 4 kB & used once?

no

yes yes

Has static colors?

SVG sprite & <use>

Loaded from same-site?

CSS `mask-image` &
`background-color`

yes

yes

no

no

no

Each of those options is explained in the following.

Using to load the SVG

In order to use SVGs inside of tags, you have to tell your bundler/framework to externalize

them (or in other words: to create a static URL). For Webpack, this can be done by updating the

Webpack config to set all .svg files to the type asset/resource :

const config = {

 // … other parts of the Webpack config …

 module: {

 rules: [

 {

 test: /\.svg/,

 type: "asset/resource",

 },

],

 },

};

Other frameworks, such as Astro, might do this automatically. Make sure your infrastructure

applies Brotli/Gzip compression, as the svg file format can be compressed like JS files.

1

https://astro.build/

Referencing the SVG then becomes as easy as regular (PNG/JPG/…) images:

import HeartIcon from "./HeartIcon.svg";

const App = () => ;

💡 Perf tips:

With you can use attributes like loading="lazy" for native lazy-loading or

importance="high" for changing the fetch priority⚡

For complex SVG animations on > 1x screens, might consume less CPU

compared to an inline SVG

⚠ Caveats of :

Usage of the CSS value currentcolor and CSS custom props (--variable) is harder, as they

do not inherit values from the current page (as the SVG file is treated as an external

resource and not as part of the DOM)

Chromium: SVG animations run capped to 60 Hz and use more CPU on DPR = 1x screens

<a> tags inside the SVG can’t be clicked

I would recommend to use single out-of-viewport SVGs like this. However, if you need to style

them or have a lot of them, you should probably pick one of the other options.

SVG sprites – using <use>

If we want to use fill and other (custom) CSS properties, or currentcolor as value, we need to

use the <use> tag that allows us to load SVGs. Together with the same Webpack rule as above, we

can reference the SVG like this:

import HeartIcon from "./HeartIcon.svg";

const App = () => <svg><use href={`${HeartIcon}#heart`} /></svg>;

If you look carefully, you can see we reference an ID, which is needed for <use> . Let’s update our

HeartIcon SVG:

DPR

2

3

4 2

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#currentcolor_keyword
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#currentcolor_keyword

<svg viewBox="0 0 300 300" id="heart">...</svg>

If you have many SVGs on your site, you can put them all into one file. SVG sprites are built

using the <symbol> tag. You need to give them an ID, so you can <use> them (literally). Styling,

currentcolor et. all works like before:

<!-- icons.svg -->

<svg>

 <!-- 1: add a `<defs>` tag -->

 <defs>

 <!-- 2: wrap in `<symbol>` and give it an ID (and other attributes such as `viewBox`) -->

 <symbol id="icon1">

 <!-- 3: paste the content of the SVG inside of the `<symbol>` -->

 ...

 </symbol>

 <symbol id="icon2">...</symbol>

 </defs>

</svg>

The sprite file will only be loaded once and will be cached. We can now reference the SVGs in the

following way:

<svg><use href="icons.svg#icon1" /></svg>

<svg><use href="icons.svg#icon2" /></svg>

Writing your own SVG sprite takes some time if done manually, but fear not, I’ve collected open-

source solutions which automate this in the ➡ tools chapter.

⚠ Caveats of <use> :

<mask> and <clipPath> do not work when externally loading SVGs . Solved by ➡ inlining.

SVGs cannot be loaded from a CDN when using <use> , see ➡ CORS chapter.

Remove even more JS: CSS & currentcolor for attributes like fill , stroke ,

width , height etc.

While you could write code like this:

5

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#currentcolor_keyword

// 😐 not optimal

const Icon = (favColor, width) => (

 <svg><use href={`${HeartIcon}#heart`} fill={favColor ? favColor : "red"} width={width} />

</svg>

);

const App = () => (

 <><Icon favColor="#FFFF00" /><Icon width={300} /></>

);

I do not recommend doing so. The logic ends up in the JavaScript bundle again and needs to be

executed by the JavaScript engine. Similar to avoiding CSS-in-JS, we want to have class names

instead, so we can use CSS to style the SVG:

// ✅ better

const Icon = (className) => (

 // add a class and let any consumer handle the details via CSS ⬇

 <svg><use href={`${HeartIcon}#heart`} className={`heart ${className}`} /></svg>

);

const YellowHeart = () => <Icon className="yellow" />;

const BigHeart = () => <Icon className="big" />;

const App = () => <><YellowHeart /><BigHeart /></>;

You can now use currentcolor to make the SVGs inherit the color from the CSS attribute color :

/* 👍 good */

.heart { fill: currentcolor } /* ⬅ apply the current `color` */

/* ⬇ those classes might even come from your design system and don't need to be SVG specific

*/

.big { width: 300px }

.yellow { color: #FFFF00 }

or even better if you have access to the SVG:

<!-- HeartIcon.svg -->

<svg viewBox="0 0 300 300" id="heart">

 <g>

 <path

 d="M0 200 v-200 h200 a100,100 90 0,1 0,200 a100,100 90 0,1 -200,0z"

 fill="currentcolor"

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#currentcolor_keyword

 /><!-- ⬆ add `currentcolor` to `fill`/`stroke` -->

 </g>

</svg>

/* 🏆 optimal */

.heart { /* `fill` is no longer needed in the CSS */ }

Any CSS attribute applied to the <use> tag, applies the styling to the <svg> / <symbol> tag of the

referenced SVG automatically. So you can easily add stroke to .heart while not touching the

color of the <path> element.

⚠ Be careful: width and height on <use> require the original <svg> to have a viewBox attribute (or <view>).

Server Components (React)

Very recent, but also a viable solution that does not require too many changes, would be adopting

the upcoming Server Components from React, which can be used in e.g. NextJS 13.4. They are

especially helpful when you need to change behaviour of components at runtime and allow you to

write JSX that is only executed on the server. This way, the SVGs are not part of the JavaScript

bundle shipped to browsers anymore. In order to keep them on the server only, it is as simple as

not adding 'use client' to the file.

💡 Make sure to read the inlining chapter, as making every SVG a Server Component inlines

them into the HTML response and has its own set of drawbacks.

In the case of CORS: CSS mask-image

In order to use <use> , you must load the (sprite) SVG from the same domain. If you have to use a

CDN, you’ll run into the quoted limitation.

You now have two options:

“SVG <use> elements don’t currently have any way to ask for cross-origin permissions. They

just don’t work cross-origin, at all.”

— O’Reilly Media book by Amelia Bellamy-Royds, Kurt Cagle, and Dudley Storey

https://css-tricks.com/svg-fragment-identifiers-work/#aa-adding-those-special-viewboxs-into-the-svg-itself
https://nextjs.org/blog/next-13-4
https://oreillymedia.github.io/Using_SVG/extras/ch10-cors.html#:~:text=SVG%20%3Cuse%3E%20elements%20don%E2%80%99t%20currently%20have%20any%20way%20to%20ask%20for%20cross%2Dorigin%20permissions.%20They%20just%20don%E2%80%99t%20work%20cross%2Dorigin%2C%20at%20all.

A way to avoid this issue is to follow the method described in chapter – but this breaks

currentcolor

If you need to apply only one color, use CSS mask-image + background-color instead:

.heart {

 mask-image: url("somecdn.com/HeartIcon.svg#heart");

 /* ⬇ 'color' the SVG */

 background-color: currentcolor;

}

However, using this approach has the same drawback as CSS background images used on LCP

elements:

Browsers need to download and execute the CSS first before they can discover and download the

SVG, which increases the time until the SVG shows up meaningfully. This can be mitigated by

using <link rel="preload" as="image"> . Additionally, all caveats of apply to the SVG itself

as well (a mask is also not part of the DOM).

One advantage is, the browser won’t download the mask image, if the element is hidden (with

display: none).

Performance vs. Time-To-Load: To inline or not to inline?

Inlining allows us to save one HTTP request, so SVGs are displayed immediately. The downside is,

which is the same as for critical CSS, the bytes are downloaded on every non-browser-cached

page. Additionally, inline SVGs are DOM elements and thus will increase the amount of

calculations browsers need to do . So while we decrease the amount the JavaScript engine has to

do, we do not want to meaningfully slow-down the time-to-download of the HTML response or

blow up the DOM size. If you’re using SVG animations, depending on the of various devices,

inlined <svg> elements might hurt performance .

Thus, we can derive a few rules for what to inline:

1. Logos have the highest priority, a logo makes your users recognize your brand. Some

websites even measure the time to load the logo (even if not the LCP element). While the LCP

element is an important factor for SEO (as it is a Core Web Vital), visual completeness implies

“the website is usable now” for most users. It also prevents a visual “flicker” or maybe even

CLS.

6

DPR

2

https://www.speedcurve.com/blog/element-timing-one-true-metric/#:~:text=What%20is%20Element%20Timing%3F
https://web.dev/learn-core-web-vitals/

2. Next, icons in the viewport, e.g. a search or hamburger icon. Those are more likely to be

touched by users, so if they load late, it impacts the experience of your users. By now you

might see parallels to critical CSS: Everything above-the-fold is more important, anything

below not so much.

3. The rest. Do not inline them and if possible lazy-load.

💡 As a rule of thumb, I’d recommend a budget similar to critical CSS. Astro uses 4 kB as a

threshold for inlining files . In general, anything inlined (CSS, SVGs, JS, content) should be

kept below 14 kB (after compression) .

If you happen to exceed the budget, benchmark first and if needed, use a technique that does not

inline and try boosting the resource priority with <link rel="preload" as="image"> .

If you decide to inline and want to maximize caching benefits, you could inline icons for 1st-time-visitors, prefetch (<link

rel="prefetch">) the sprite SVG in the background and for subsequent visits, only load the sprite SVG (e.g. by checking a

cookie value on the server).

Inlining SVGs without polluting the JS bundle

Now that we know what to inline, let’s see how to do it without adding the SVG back into our JS

bundle again. In the following, we inline our Heart icon right after <body> , so any SVG referencing

the sprite will show up right from the start. You could use the same technique for less important

sprites, by placing the sprite output right before </body> .

import fs from "node:fs";

const svgIcons = await fs.readFile("path/to/icons.svg"); // ← load SVG file content

// … router might come from HTTP frameworks like fastify or express …

app.get("/", function () {

 const reactOutput = renderToString(App);

 return `<!doctype html><head><title>SVG-in-HTML</title></head>

 <body>

 <!-- ⬇ output the SVG sprite to be re-used and make it invisible -->

 <div style="display:none">${svgIcons}</div>

 ${reactOutput}

7

8

 </body>`;

});

Now we need to make sure any instance where the SVG should be used does not link to the file,

but rather only to the ID:

<!-- Note the missing file path in the `href` attribute. -->

<svg><use href="#heart"></svg>

Be careful though, IDs now are global and not only inside of the SVG file.

Voilà, SVG-in-HTML. This could be expanded to extract all the IDs used per page/output, so it only

spills out the SVGs that are actually used instead of all of them. used-styles is a good example

of how to do this for critical CSS.

Wrap Up

By using the described techniques, you can make your JavaScript bundle smaller and more

performant, which helps slow and old devices, and creates a more inclusive internet.

Aside from that and as always for web-performance related topics, there might be other lower-

hanging-fruits, or more important things to optimize. So before you jump right into optimizing

your SVGs, keep in mind, SVG-in-JS might not be your biggest culprit. Measure, then optimize.

Tip: A Ctrl+F for <svg> might be enough to give you an idea.

Other things to make your JS bundle smaller: ship Preact instead of React, ship Redaxios instead of

Axios, look through Luke Edward’s module collection that replaces bigger modules (e.g. uuid,

clsx), replace CSS-in-JS with either a solution that has no runtime overhead like ecsstatic/kuma

UI/Panda, or with e.g. CSS modules. There are also some Webpack plugins which replace bigger

modules with smaller ones. Bundlephobia is your friend for finding smaller modules.

Tools / Snippets

Ben Adam has written a similar piece, where he shows a snippet on how to manage SVG sprites in

React.

Epic Stack + SVG sprites - “using rmx-cli to automate the sprite generation”

https://github.com/theKashey/used-styles
https://preactjs.com/
https://github.com/developit/redaxios
https://github.com/lukeed/
https://github.com/lukeed/uuid
https://github.com/lukeed/clsx
https://www.ecsstatic.dev/
https://www.kuma-ui.com/
https://panda-css.com/
https://github.com/GoogleChromeLabs/webpack-libs-optimizations
https://bundlephobia.com/
https://benadam.me/thoughts/react-svg-sprites/#:~:text=similar%2C%20but%20different.-,The%20Symbol%20Element,-Let%20me%20introduce
https://github.com/kiliman/epic-stack-with-svg-sprites

JetBrains SVG sprite loader - “Webpack loader for creating SVG sprites.”

Icon-pipeline - ”🚚 SVG icon pipeline - Optimize icons & build SVG sprites”

SVGomg - “SVG Optimizer’s Missing GUI”

Footnotes & Comments

Thank you Barry Pollard and Kevin Farrugia for the invaluable feedback for this post.

1. Webpack Docs. As an alternative, you could do new URL('path/to/svg.svg',

import.meta.url) for single SVGs. ↩

2. Inline SVGs run on the compositor on DPR = 1x screens, which usually leads to higher

performance, as mentioned in this Chromium bug. For devices with a screen over 1x DPR,

it is the opposite, <svg> consumes more CPU than . You can try yourself:

Codepen and the inline <svg> Codepen. Use DevTools -> Ctrl + Shift + P -> Performance

monitor. ↩ ↩ ↩

3. Alfredo Lopez made me aware of a clever trick, setup by one of his colleagues: You could

use query parameters (e.g. HeartIcon.svg?color=green) to dynamically embed

<style>:root { --color: green }</style> into the SVG, so that CSS custom props can be

used. Once a blog post about this technique is up, I’ll link it here. ↩

4. Chromium comment ↩

5. StackOverflow Reference ↩

6. web.dev article regarding DOM size ↩

7. Astro docs ↩

8. web.dev article regarding critical CSS ↩

Loading comments. If you see this for longer, please refresh the page.

2 3

https://github.com/JetBrains/svg-sprite-loader
https://github.com/DavidWells/icon-pipeline
https://jakearchibald.github.io/svgomg/
https://www.tunetheweb.com/
https://imkev.dev/
https://webpack.js.org/guides/asset-modules/#resource-assets
https://bugs.chromium.org/p/chromium/issues/detail?id=1458806
https://codepen.io/kevinfarrugia/pen/OJBvmyw
https://codepen.io/kevinfarrugia/pen/rNqdmYL
https://bugs.chromium.org/p/chromium/issues/detail?id=1458806#c3
https://stackoverflow.com/a/72044790
https://web.dev/dom-size/
https://docs.astro.build/en/reference/configuration-reference/#buildinlinestylesheets
https://web.dev/extract-critical-css/#14KB

⬆ Back to top · 📖 Read other posts

Text reflects personal opinion, is not sponsored, endorsed or authorized by any brand

Imprint

Tags

performance images svg webpack jsx javascript

https://kurtextrem.de/posts
https://twitter.com/kurtextrem
https://github.com/kurtextrem
https://www.linkedin.com/in/kurtextrem/
https://kurtextrem.de/imp.html
https://kurtextrem.de/tags
https://kurtextrem.de/rss.xml
https://kurtextrem.de/tags/performance
https://kurtextrem.de/tags/images
https://kurtextrem.de/tags/svg
https://kurtextrem.de/tags/webpack
https://kurtextrem.de/tags/jsx
https://kurtextrem.de/tags/javascript

