
JavaScript Macros in Bun

Jarred Sumner · May 31, 2023

Two weeks ago, we launched our new JavaScript bundler in Bun v0.6.0. Today we're releasing a

new feature that highlights the tight integration between Bun's bundler and runtime: Bun

Macros.

Macros are a mechanism for running JavaScript functions at bundle-time. The value returned

from these functions are directly inlined into your bundle.

As a toy example, consider this simple function that returns a random number.

Inside our source code, we can import this function as a macro using import attribute syntax. If

you haven't seen this syntax before, it's a Stage 3 TC39 proposal that lets you attach

additional metadata to import statements.

cli.tsx

Now we'll bundle this file with bun build . The bundled file will be printed to stdout.

As you can see, the source code of the random function occurs nowhere in the bundle. Instead,

it is executed during bundling and the function call (random()) is replaced with the result of the

export function random() {

 return Math.random();

}

import { random } from './random.ts' with { type: 'macro' };

console.log(`Your random number is ${random()}`);

bun build ./cli.tsx$

console.log(`Your random number is ${0.6805550949689833}`);

Docs

Blog

https://bun.sh/
https://twitter.com/jarredsumner
https://bun.sh/rss.xml
https://bun.sh/blog/bun-bundler
https://bun.sh/blog/bun-v0.6.0
https://github.com/tc39/proposal-import-attributes
https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

function. Since the source code will never be included in the bundle, macros can safely

perform privileged operations like reading from a database.

When to use macros

For small things where you would otherwise have a one-off build script, bundle-time code

execution can be easier to maintain. It lives with the rest of your code, it runs with the rest of

the build, it is automatically paralellized, and if it fails, the build fails too.

If you find yourself running a lot of code at bundle-time though, consider running a server

instead.

Let's look at some scenarios where macros might be useful.

Embed latest git commit hash

in-the-browser.ts getGitCommitHash.ts

When we build it, the getGitCommitHash is replaced with the result of calling the function:

output.js CLI

You're probably thinking "Why not just use process.env.GIT_COMMIT_HASH ?" Well, you can do

that too. But can you do this with an environment variable?

Make fetch() requests at bundle-time

In this example, we make an outgoing HTTP request using fetch() , parse the HTML response

using HTMLRewriter , and return an object containing the title and meta tags–all at bundle-time.

in-the-browser.tsx meta.ts

import { getGitCommitHash } from './getGitCommitHash.ts' with { type: 'macro' };

console.log(`The current Git commit hash is ${getGitCommitHash()}`);

console.log(`The current Git commit hash is 3ee3259104f`);

import { extractMetaTags } from './meta.ts' with { type: 'macro' };

Docs

Blog

https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

The extractMetaTags function is erased at bundle-time and replaced with the result of the

function call. This means that the fetch request happens at bundle-time, and the result is

embedded in the bundle. Also, the branch throwing the error is eliminated since it's

unreachable.

output.js CLI

How it works

Bun Macros are import statements annotated the {type: 'macro'} import attribute.

export const Head = () => {

 const headTags = extractMetaTags("https://example.com");

 if (headTags.title !== "Example Domain") {

 throw new Error("Expected title to be 'Example Domain'");

 }

 return <head>

 <title>{headTags.title}</title>

 <meta name="viewport" content={headTags.viewport} />

 </head>;

};

import { jsx, jsxs } from "react/jsx-runtime";

export const Head = () => {

 jsxs("head", {

 children: [

 jsx("title", {

 children: "Example Domain",

 }),

 jsx("meta", {

 name: "viewport",

 content: "width=device-width, initial-scale=1",

 }),

],

 });

};

export { Head };

import { myMacro } from './macro.ts' with { type: 'macro' }

Docs

Blog

https://github.com/tc39/proposal-import-attributes
https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

Import attributes are a Stage 3 ECMAScript proposal, which means it is overwhelmingly likely

they will be added as an official part of the JavaScript language.

Bun also supports import assertion syntax. Import assertions were an earlier incarnation of import

attributes that has now been abandoned (but is already supported by a number of browsers and

runtimes).

When Bun's transpiler sees one of these special imports, it calls the function inside the

transpiler using Bun's JavaScript runtime and converts the return value from JavaScript into an

AST node. These JavaScript functions are called at bundle-time, not runtime.

Execution order

Bun Macros are executed synchronously in the transpiler during the visiting phase—before

plugins and before the transpiler generates the AST. They are executed in the order they are

called. The transpiler will wait for the macro to finish executing before continuing. The

transpiler will also await any Promise returned by a macro.

Bun's bundler is multi-threaded. As such, macros execute in parallel inside of multiple spawned

JavaScript "workers".

Dead code elimination

The bundler performs dead code elimination after running and inlining macros. So given the

following macro:

returnFalse.ts

...then bundling the following file will produce an empty bundle.

import { myMacro } from "./macro.ts" assert { type: "macro" };

export function returnFalse() {

 return false;

}

import {returnFalse} from './returnFalse.ts' with { type: 'macro' };

if (returnFalse()) {

 console.log("This code is eliminated");

Docs

Blog

https://caniuse.com/mdn-javascript_statements_import_import_assertions
https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

Security considerations

Macros must explicitly be imported with { type: "macro" } in order to be executed at bundle-

time. These imports have no effect if they are not called, unlike regular JavaScript imports

which may have side effects.

You can disable macros entirely by passing the --no-macros flag to Bun. It produces a build

error like this:

Macros are disabled in node_modules

To reduce the potential attack surface for malicious packages, macros cannot be invoked from

inside node_modules/**/* . If a package attempts to invoke a macro, you'll see an error like this:

Your application code can still import macros from node_modules and invoke them.

Limitations

Some things to know.

}

error: Macros are disabled

foo();

^

./hello.js:3:1 53

error: For security reasons, macros cannot be run from node_modules.

beEvil();

^

node_modules/evil/index.js:3:1 50

import {macro} from "some-package" with { type: "macro" };

macro();

Docs

Blog

https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

The result of the macro must be serializable!

Bun's transpiler needs to be able to serialize the result of the macro so it can be inlined into

the AST. All JSON-compatible data structures are supported:

macro.ts

Macros can be async, or return Promise instances. Bun's transpiler will automatically await

the Promise and inline the result.

macro.ts

The transpiler implements specicial logic for serializing common data formats like Response ,

Blob , TypedArray .

TypedArray : Resolves to a base64-encoded string.

Response : Where relevant, Bun will read the Content-Type and serialize accordingly; for

instance, a Response with type application/json will be automatically parsed into an object

and text/plain will be inlined as a string. Responses with an unknown or undefined type

will be base-64 encoded.

Blob : As with Response , the serialization depends on the type property.

The result of fetch is Promise<Response> , so it can be directly returned.

macro.ts

Functions and instances of most classes (except those mentioned above) are not serializable.

export function getObject() {

 return {

 foo: "bar",

 baz: 123,

 array: [1, 2, { nested: "value" }],

 };

}

export async function getText() {

 return "async value";

}

export function getObject() {

 return fetch("https://bun.sh")

}

Docs

Blog

https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

The input arguments must be statically analyzable.

Macros can accept inputs, but only in limited cases. The value must be statically known. For

example, the following is not allowed:

However, if the value of foo is known at bundle-time (say, if it's a constant or the result of

another macro) then it's allowed:

This outputs:

export function getText(url: string) {

 // this doesn't work!

 return () => {};

}

import {getText} from './getText.ts' with { type: 'macro' };

export function howLong() {

 // the value of `foo` cannot be statically known

 const foo = Math.random() ? "foo" : "bar";

 const text = getText(`https://example.com/${foo}`);

 console.log("The page is ", text.length, " characters long");

}

import {getText} from './getText.ts' with { type: 'macro' };

import {getFoo} from './getFoo.ts' with { type: 'macro' };

export function howLong() {

 // this works because getFoo() is statically known

 const foo = getFoo();

 const text = getText(`https://example.com/${foo}`);

 console.log("The page is", text.length, "characters long");

}

function howLong() {

 console.log("The page is", 1322, "characters long");

}

export { howLong };

Docs

Blog

https://bun.sh/docs
https://bun.sh/blog
https://bun.sh/discord
https://github.com/oven-sh/bun

Built with Bun v0.6.12 Discord

GitHub

Docs

Blog

We're hiring →

https://bun.sh/discord
https://github.com/oven-sh/bun
https://bun.sh/docs
https://bun.sh/rss.xml
https://bun.sh/blog
https://bun.sh/careers

