Hurlz Q Search = Menu

Announcing Hurl 4.0.0
Jun. 30, 2023

The Hurl team is happy to announce Hurl 4.0.0 & !

Hurl is a command line tool powered by curl, that runs HTTP requests defined in a simple plain
text format:

GET https://example.org/api/tests/4567

HTTP 200

[Asserts]

header "x-foo" contains "bar"

certificate "Expire-Date" daysAfterNow > 15

jsonpath "$.status" == "RUNNING" # Check the status code
jsonpath "$.tests" count == 25 # Check the number of items
jsonpath "$.id" matches /\d{4}/ # Check the format of the id

What's new in this release:

o Improved HTML Report with Request Waterfall
« Detailed Error for CI/CD

« New Filters: decode and xpath

« JSONPath Change

o Custom HTTP Methods

Improved HTML Report with Request Waterfall

We've improved Hurl HTML report. The HTML report is pure HTML, without any JavaScript and
with inlined CSS, so it's should be easy to integrate in your favorite CI/CD solution (like GitLab
CI/CD or GitHub Actions for instance). Now, each run produces:

- a waterfall timeline: each request/response is displayed on a beautiful graph, with easy
access to response timings (DNS, TCP handshake, time to first byte etc...). These timings
are provided by libcurl and you can find an explanation of each indicator in the
documentation

« arun log with request and response headers, certificate info etc...

https://hurl.dev/
https://hurl.dev/search.html
https://github.com/Orange-OpenSource/hurl/releases/tag/4.0.0
https://hurl.dev/
https://curl.se/
https://hurl.dev/docs/manual.html#report-html
https://docs.gitlab.com/ee/ci/
https://github.com/features/actions
https://hurl.dev/docs/response.html#timings

« a syntax colored source file with inline errors

Report Timeline Run Source

File: /tmp/test.hurl
Status: Success
Duration: 520 ms
Errors:

0O ms 100 ms 200 ms 300 ms 400 ms 500
© GET uww googie.r 200 wn
© GET hurl.dev 200 un I I
@ GET hurl.dev/blog 301 run /T
@ GET www.orange silin © GET https/hurl.deviblog 301 I
[DNS lookup 39.0 ps Start: 315.0 ms
I TCP handshake 0.0 us Stop: 339.9 ms
. SSL handshake 0.0 ys Transferred: 178.0 B
B wait 24.8 ms
B Data transfer 37.0ps {view run) ({view source)
Total 24.9ms Explanation

The timings used to construct the requests timeline are also exposed through - - json option. - -
json gives you a structured view of a Hurl run with errors, asserts, certificates, captures, cookies
and so timings. You can even use it to produce your own report!

Once you see it, you can’t unsee it

What's interesting with rich visualisation is it can reveal hidden or not obvious things. For
instance, you can have this kind of gaps on some runs:

200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms

- = | I
.
L

After analysis, the gap between requests in this sample test is caused by a huge numbers of
assertions on the HTTP response. We have, as of Hurl 4.0.0, a naive approach of asserts
computation: each asserts of the same response is independent, and we parse and recompute
every assert from scratch. Until we see these edge cases, we were very proud of Hurl speed
(due to the combination of 1ibcurl and Rust). Now, we know that we have to improve assert
performance for the next release & !

https://hurl.dev/docs/manual.html#json

Detailed Error for CI/ICD

When you’ve error in some test, the analysis can be difficult because you don’t have a lot of
information apart of the expected values:

$ hurl --test test.hurl
test.hurl: Running [1/1]
error: Assert failure
--> test.hurl:4:0
|

4 | header "Control-Security-Policy" contains "default-src 'self'"
| actual: none
| expected: contains string <default-src 'self'>
I

test.hurl: Failure (1 request(s) in 128 ms)

Executed files: 1
Succeeded files: 0 (0.0%)
Failed files: 1 (100.0%)
Duration: 130 ms

With the new --error-format option, you can opt in for a longer error description. In this mode,
the response header and the response body are automatically logged:

$ hurl --error-format long --test test.hurl

test.hurl: Running [1/1]

HTTP/2 200

date: Thu, 29 Jun 2023 16:06:58 GMT

content-type: text/html

content-length: 58941

last-modified: Thu, 29 Jun 2023 14:37:22 GMT

etag: "649d9722-e63d"

strict-transport-security: max-age=31536000; includeSubDomains
content-security-policy: default-src 'self'; script-src 'self' 'unsafe-eval' "\
x-frame-options: SAMEORIGIN

x-content-type-options: nosniff

accept-ranges: bytes

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="apple-touch-icon" href="/assets/img/hurl-icon-120.png" />

https://hurl.dev/docs/manual.html#error-format

</body>
</html>

error: Assert failure
--> test.hurl:4:0

4 header "Control-Security-Policy" contains "default-src 'self'"

I

I

| actual: none

| expected: contains string <default-src 'self'>
I

test.hurl: Failure (1 request(s) in 146 ms)

Executed files: 1
Succeeded files: 0 (0.0%)
Failed files: 1 (100.0%)
Duration: 148 ms

In this example, we can see that there is actually a Content-Security-Policy whereas we’re
guerying a Control-Security-Policy header. The bug is now really simple to solve because
the response headers and body are logged.

This option is really useful in CI/CD where you want to have all the available context to debug
your session, without re-running your tests. Beware that, as the body response is logged, the log
can be really long.

New Filters: decode and xpath

Textual asserts in Hurl work by automatically decoding the response body bytes, based on the
Content-Type response header. That way, if we have a Latin 1 encoded HTML or an UFT-8
encoded HTML we can write the same assert without any encoding concern:

UTF-8 encoded document:
GET https://example.org/charset/utf8

HTTP 200

Content-Type: text/html; charset=utf-8
[Asserts]

body == "<p>cafeé</p>"

Latinl encoded document:
GET https://example.org/charset/latinl

HTTP 200

Content-Type: text/html; charset=latinl
[Asserts]

body == "<p>cafe</p>"

To decode a response from bytes to text, Hurl uses charset hint from Content-Type response
header. But sometimes the Content-Type response header doesn’t specify any encoding. Or
the encoding is indicated inside the HTML document through <meta> tag:

<IDOCTYPE html>
<html>

<head>

<meta http-equiv='Content-Type' content='text/html; charset=gh2312'>
</head>
<body>0000</body>
</html>

In this case, a decode filter can now be used to explicitly decodes bytes to text and do checks:

GET https://example.com/hello_gb231

HTTP 200

[Asserts]

header "Content-Type" == "text/html"

bytes contains hex,c4e3bac3cacObde7; # 0000 encoded in GB2312
bytes decode "gbh2312" xpath "string(//body)" == "0000"

As hinted in the previous Hurl snippet, you can now evaluate XPath expression on response
part with a xpath filter.

JSONPath Change

In Hurl 4.0.0, we’ve slightly changed the evaluation of JSONPath query. There is no proper
specifications for JSONPath. The de-facto one, that Hurl tries to follow as closely as possible, is
still https://goessner.net/articles/JsonPath/. There are a few edge cases for which several
implementations differ. For instance, standard JSONPath always returns a collection, which
most of the time is not meaningful, and harder to test. Some implementations (such as the Java
library https://github.com/json-path/JsonPath) also distinguish between node value (definite
path) and collection (indefinite path).

Basically, in Hurl 4.0.0, the only selectors returning a value are:

 array index selector ($.store.book[2])

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta#http-equiv
https://hurl.dev/docs/filters.html#decode
https://hurl.dev/docs/filters.html#xpath
https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/
https://github.com/json-path/JsonPath

» object key selector ($.store.bicycle.color/$.store.bicycle['color'])

Other selectors, that use filters (for instance ?(@.price >= 10) or $[*].id) will return a
collection. You can then use nth filter to extract a value from this collection.

GET https://example.com/books

HTTP 200

[Asserts]

jsonpath "$.store.book[0].title" == "Dune"
jsonpath "$.store.book[*].title" nth © == "Dune"

Custom HTTP methods

Hurl 4.0.0 supports now any custom HTTP method. The only constraint is to write the method in
uppercase. You can right-away experiment the incoming_new QUERY method:

QUERY https://example.org/contacts
Content-Type: example/query
Accept: text/csv

HTTP 200

Content-Type: text/csv

surname, givenname, email

Smith, John, john.smith@example.org

Jones, Sally, sally.jones@example.com
Dubois, Camille, camille.dubois@example.net

Others

There are other improvements and bug fixes, you can check a complete list in our release note.
If you like Hurl, don’t hesitate to give us a star on GitHub or share it on Twitter!

We'll be happy to hear from you, either for enhancement requests or for sharing your success
story using Hurl!

N RSS feed

https://hurl.dev/docs/filters.html#nth
https://www.ietf.org/archive/id/draft-ietf-httpbis-safe-method-w-body-02.html
https://github.com/Orange-OpenSource/hurl/releases/tag/4.0.0
https://github.com/Orange-OpenSource/hurl/stargazers
https://twitter.com/HurlDev
https://hurl.dev/blog/feed.xml

Build rev. 3b01949 Hurl2 by CCMD Team

